

Free download \& print from www.itute.com
© Copyright itute.com 2007 Do not reproduce by other means

Inflection points

(Suitable for students in year 11/12)

Concave upward and concave downward

A curve is called concave upward on an interval $[a, b]$ if it lies above the tangent drawn at any point in $[a, b]$.

A curve is called concave downward on an interval $[a, b]$ if it lies below the tangent drawn at any point in $[a, b]$.

Inflection points

A point on a curve $y=f(x)$ is called an inflection point if the curve changes from concave upward to concave downward or from concave downward to concave upward at that point.

Points $P($ at $x=p)$ and $Q($ at $x=q)$ are inflection points of the curve. At P the curve changes from concave upward to concave downward as you trace the curve in the positive x-direction; at Q the curve changes from concave downward to concave upward.

The graph of the first derivative (gradient function) $y=f^{\prime}(x)$ is shown below.

$y=f^{\prime}(x)$ has turning points at $x=p$ and $x=q$,
\therefore the values of the second derivatives at $x=p$ and $x=q$ are $f^{\prime \prime}(p)=0$ and $f^{\prime \prime}(q)=0$.

The following is a summary of possible inflection points.
Let $x=c$ be the x-coordinate of the inflection point. c^{-}means less than (or to the left of) c, c^{+}means greater than (or to the right of) c.

The common features of the possible inflection points are:
(1) $f^{\prime \prime}(c)=0$, i.e. the second derivative of curve f at an inflection point equals zero.
(2) either both $f^{\prime}\left(c^{-}\right)$and $f^{\prime}\left(c^{+}\right)$are positive or both are negative.

In the last two examples above, $f^{\prime}(c)=0$, i.e. the gradient of the curve at the inflection point is zero. These inflection points are called stationary inflection points.

Steps in finding the inflection points of a function

Step 1. Find the plausible x-coordinate(s) of the inflection point(s) of f by letting $f^{\prime \prime}(x)=0$.
Step 2. Show that at a plausible x-coordinate, either both $f^{\prime}\left(c^{-}\right)$ and $f^{\prime}\left(c^{+}\right)$are positive or both are negative for an inflection point at $x=c$.

Note: Step 2 is necessary because there are points where $f^{\prime \prime}(x)=0$ but they are not inflection points. See example 1.

If a further step is taken to show $f^{\prime}(x)=0$, then the inflection point is stationary. See example 2.

Example 1 Find the x-coordinate(s) of the inflection point(s) of $f(x)=10 x^{7}-14 x^{6}+21 x^{5}-35 x^{4}$.

Step 1. $f(x)=10 x^{7}-14 x^{6}+21 x^{5}-35 x^{4}$,
$f^{\prime}(x)=70 x^{6}-84 x^{5}+105 x^{4}-140 x^{3}$,
$f^{\prime \prime}(x)=420 x^{5}-420 x^{4}+420 x^{3}-420 x^{2}$.

Let $f^{\prime \prime}(x)=0$, i.e. $420 x^{5}-420 x^{4}+420 x^{3}-420 x^{2}=0$, $420 x^{2}\left(x^{3}-x^{2}+x-1\right)=0$,
$420 x^{2}\left(\left(x^{3}-x^{2}\right)+(x-1)\right)=0$,
$420 x^{2}\left(x^{2}(x-1)+1(x-1)\right)=0$,
$420 x^{2}(x-1)\left(x^{2}+1\right)=0$.
$\therefore x=0$ or $x=1$ are the plausible locations of inflection points.
Step 2. Check the gradients of the function to the immediate left and right of each point.

x	0^{-}	0^{+}	1^{-}	1^{+}
$f^{\prime}(x)$	>0	<0	<0	<0

Since $f^{\prime}\left(0^{-}\right)>0$ and $f^{\prime}\left(0^{+}\right)<0, \therefore$ the point at $x=0$ is not an inflection point.

Since $f^{\prime}\left(1^{-}\right)<0$ and $f^{\prime}\left(1^{+}\right)<0$, both are negative, \therefore the point at $x=1$ is an inflection point.

In general, for a function f, if the point at $x=c$ is an inflection point, then $f^{\prime \prime}(c)=0$.
However, the converse is not true. If $f^{\prime \prime}(c)=0$, the point at $x=c$ is not necessarily an inflection point.

Example 2 Find the x-coordinate(s) of the stationary inflection point(s) of $f(x)=8 x^{4}+12 x^{3}+6 x^{2}+x$.

Step 1. $f(x)=8 x^{4}+12 x^{3}+6 x^{2}+x$,
$f^{\prime}(x)=32 x^{3}+36 x^{2}+12 x+1$, $f^{\prime \prime}(x)=96 x^{2}+72 x+12$.

Let $f^{\prime \prime}(x)=0$, i.e. $96 x^{2}+72 x+12=0$,
$12\left(8 x^{2}+6 x+1\right)=0$,
$12(4 x+1)(2 x+1)=0$.
$\therefore x=-\frac{1}{2}$ or $x=-\frac{1}{4}$ are the plausible locations of inflection points.

Step 2. Check the gradients of the function to the immediate left and right of each point, and at each point.

x	$\left(-\frac{1}{2}\right)^{-}$	$-\frac{1}{2}$	$\left(-\frac{1}{2}\right)^{+}$	$\left(-\frac{1}{4}\right)^{-}$	$-\frac{1}{4}$	$\left(-\frac{1}{4}\right)^{+}$
$f^{\prime}(x)$	<0	0	<0	<0	<0	<0

Since both $f^{\prime}\left(\left(-\frac{1}{4}\right)^{-}\right)$and $f^{\prime}\left(\left(-\frac{1}{4}\right)^{+}\right)$are negative, \therefore the point at $x=-\frac{1}{4}$ is an inflection point. However, it is not stationary because $f^{\prime}\left(-\frac{1}{4}\right) \neq 0$.

Since both $f^{\prime}\left(\left(-\frac{1}{2}\right)^{-}\right)$and $f^{\prime}\left(\left(-\frac{1}{2}\right)^{+}\right)$are negative, and $f^{\prime}\left(-\frac{1}{2}\right)=0, \therefore$ the point at $x=-\frac{1}{2}$ is a stationary inflection point.

