

Free download & print from www.itute.com © Copyright itute.com 2007 Do not reproduce by other means

Inflection points

(Suitable for students in year 11/12)

Concave upward and concave downward

A curve is called concave upward on an interval [a,b] if it lies above the tangent drawn at any point in [a,b].

A curve is called concave downward on an interval [a,b] if it lies below the tangent drawn at any point in [a,b].

Inflection points

A point on a curve y = f(x) is called an inflection point if the curve changes from concave upward to concave downward or from concave downward to concave upward at that point.

Points P (at x = p) and Q (at x = q) are inflection points of the curve. At P the curve changes from concave upward to concave downward as you trace the curve in the positive *x*-direction; at Q the curve changes from concave downward to concave upward.

The graph of the first derivative (gradient function) y = f'(x) is shown below.

y = f'(x) has turning points at x = p and x = q, \therefore the values of the second derivatives at x = p and x = q are f''(p) = 0 and f''(q) = 0.

The following is a summary of possible inflection points. Let x = c be the x-coordinate of the inflection point. c^- means less than (or to the left of) c, c^+ means greater than (or to the right of) c.

$$\begin{aligned} f'(c^{-}) > 0, \ f'(c) > 0, \ f'(c^{+}) > 0, \ f''(c) = 0. \\ f'(c^{-}) > 0, \ f'(c) > 0, \ f'(c^{+}) > 0, \ f''(c) = 0. \\ f'(c^{-}) < 0, \ f'(c) < 0, \ f'(c^{+}) < 0, \ f''(c) = 0. \\ f'(c^{-}) < 0, \ f'(c) < 0, \ f'(c^{+}) < 0, \ f''(c) = 0. \\ f'(c^{-}) > 0, \ f'(c) = 0, \ f'(c^{+}) > 0, \ f''(c) = 0. \\ \end{aligned}$$

The common features of the possible inflection points are: (1) f''(c) = 0, i.e. the second derivative of curve f at an inflection point equals zero.

(2) either both $f'(c^-)$ and $f'(c^+)$ are positive or both are negative.

In the last two examples above, f'(c) = 0, i.e. the gradient of the curve at the inflection point is zero. These inflection points are called **stationary inflection points**.

Steps in finding the inflection points of a function

Step 1. Find the plausible *x*-coordinate(s) of the inflection point(s) of *f* by letting f''(x) = 0.

Step 2. Show that at a plausible *x*-coordinate, either both $f'(c^{-})$ and $f'(c^{+})$ are positive or both are negative for an inflection point at x = c.

Note: Step 2 is necessary because there are points where f''(x) = 0 but they are not inflection points. See example 1.

If a further step is taken to show f'(x) = 0, then the inflection point is stationary. See example 2.

Example 1 Find the x-coordinate(s) of the inflection point(s) of $f(x) = 10x^7 - 14x^6 + 21x^5 - 35x^4$.

Step 1.
$$f(x) = 10x^7 - 14x^6 + 21x^5 - 35x^4$$
,
 $f'(x) = 70x^6 - 84x^5 + 105x^4 - 140x^3$,
 $f''(x) = 420x^5 - 420x^4 + 420x^3 - 420x^2$.

Let f''(x) = 0, i.e. $420x^5 - 420x^4 + 420x^3 - 420x^2 = 0$, $420x^2(x^3 - x^2 + x - 1) = 0$, $420x^2((x^3 - x^2) + (x - 1)) = 0$, $420x^2(x^2(x - 1) + 1(x - 1)) = 0$, $420x^2(x - 1)(x^2 + 1) = 0$.

 $\therefore x = 0$ or x = 1 are the plausible locations of inflection points.

Step 2. Check the gradients of the function to the immediate left and right of each point.

x	0-	0^+	1-	1^{+}
f'(x)	>0	<0	<0	<0

Since $f'(0^-) > 0$ and $f'(0^+) < 0$, \therefore the point at x = 0 is **not** an inflection point.

Since $f'(1^-) < 0$ and $f'(1^+) < 0$, both are negative, \therefore the point at x = 1 is an inflection point.

In general, for a function f, if the point at x = c is an inflection point, then f''(c) = 0.

However, the converse is not true. If f''(c) = 0, the point at x = c is **not** necessarily an inflection point.

Example 2 Find the *x*-coordinate(s) of the stationary inflection point(s) of $f(x) = 8x^4 + 12x^3 + 6x^2 + x$.

Step 1.
$$f(x) = 8x^4 + 12x^3 + 6x^2 + x$$
,
 $f'(x) = 32x^3 + 36x^2 + 12x + 1$,
 $f''(x) = 96x^2 + 72x + 12$.

Let
$$f''(x) = 0$$
, i.e. $96x^2 + 72x + 12 = 0$,
 $12(8x^2 + 6x + 1) = 0$,
 $12(4x + 1)(2x + 1) = 0$.
 $\therefore x = -\frac{1}{2}$ or $x = -\frac{1}{4}$ are the plausible locations of inflection
points.

Step 2. Check the gradients of the function to the immediate left and right of each point, and at each point.

x	$\left(-\frac{1}{2}\right)^{-}$	$-\frac{1}{2}$	$\left(-\frac{1}{2}\right)^+$	$\left(-\frac{1}{4}\right)^{-}$	$-\frac{1}{4}$	$\left(-\frac{1}{4}\right)^+$
f'(x)	<0	0	<0	<0	<0	<0

Since both $f'\left(\left(-\frac{1}{4}\right)^{-}\right)$ and $f'\left(\left(-\frac{1}{4}\right)^{+}\right)$ are negative, \therefore the point at $x = -\frac{1}{4}$ is an inflection point. However, it is not stationary because $f'\left(-\frac{1}{4}\right) \neq 0$.

Since both $f'((-\frac{1}{2})^-)$ and $f'((-\frac{1}{2})^+)$ are negative, and $f'(-\frac{1}{2}) = 0$, \therefore the point at $x = -\frac{1}{2}$ is a stationary inflection point.