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Algebra 
 
The binomial theorem 
This theorem is used to expand expression of the form ( )nqp + , 
where n is a positive integer. 
( ) n

n
nnnnnnnn qpCqpCqpCqpCqp 022

2
11

1
0

0 ......++++=+ −−  
 
Example 1   Expand ( )432 −x . 
 
( ) ( ) ( ) ( ) ( ) ( ) ( )22

2
413

1
404

0
44 32323232 −+−+−=− xCxCxCx  

                 ( ) ( ) ( ) ( )40
4

431
3

4 3232 −+−+ xCxC  

812162169616 234 +−+−= xxxx  
 
Example 2   Find the coefficient of the term containing 6x  in the 
expansion of ( )93 ax − , where a is a constant. 
 
The required term is ( ) ( )36

3
9 3 axC − .  

The coefficient is ( ) ( ) 336
3

9 612363 aaC −=− . 
 
Factorisation of polynomial functions 
Not all polynomials can be factorised analytically (by algebraic 
methods). The following methods are applicable to those 
polynomials that have factors involving rational numbers and in 
some cases, surds. 
   
Common factors Look for common factors and separate them 
from the terms of the polynomial by means of the distributive 
law in reverse. This is always the first step in all factorisations. 
 

Example   Factorise ( ) xxxxf
2
51025 23 +−= . 

( ) ( )( ) ( )( ) ( ) xxxxxxxxxxf 





+−=+−=

2
152555

2
51025 23 . All 

three terms have common factors 5 and x. 

Hence ( ) 





 +−=






 +−=

2
1255

2
1255 2 xxxxxxxxf . 

 
Difference of two squares Rewrite the polynomial in the form 

22 ba −  that can be factorised as ( )( )baba +− . 
 
Note: Polynomials in the form of sum of two squares cannot be 
factorised. 
 

Example 1   Factorise 
25
136 2 −x . 

The polynomial has no common factors. 

( ) 





 +





 −=






−=−

5
16

5
16

5
16

25
136

2
22 xxxx . 

 
Example 2   Factorise xxy 1227 3 −= . 
 
Separate the common factors 3 and x from the two terms, rewrite 
the resulting two terms as difference of two squares and then 
factorise. 

( ) ( )( ) ( )( )23233233493 222 +−=−=−= xxxxxxxy . 
 
Example 3   Factorise 1967 2 −x . 
 
Separate the common factor 7 from the two terms, rewrite the 
resulting two terms as difference of two squares and then 
factorise. 

( ) ( ) ( )( )727277272871967
2222 +−=




 −=−=− xxxxx . 

Example 4   Factorise 94 −x  over Q. 
 
Rewrite the binomial as difference of two squares and then 
factorise. 

( ) ( )( )
( ) ( ) ( )( )( )33333

3339
2222

222224

++−=+




 −=

+−=−=−

xxxxx

xxxx
 

 
Example 5   Factorise ( ) 532 2 −−x  over R. 
 
Do not expand. Express the polynomial as difference of two 
squares and then factorise. 

 ( ) ( ) ( ) ( )( )532532532532
222 +−−−=−−=−− xxxx . 

 
Quadratic trinomials For trinomials that have linear factors 
involving rational numbers, the quickest method is by trial and 
error. 
 

( )( )qxpxcbxx ++=++2 , by trial and error, find numbers p 
and q such that cpq =  AND bqp =+ . 

( )( )qnxpmxcbxax ++=++2 , by trial and error, find numbers 
m, n, p and q such that amn = , cpq =  AND bnpmq =+ . 
 
Note: Check the value of cb 42 −  in the first case and acb 42 −  
in the second case before trying. If the value is negative, the 
trinomial has no linear factors. If the value is zero, the two linear 
factors are the same. 
 
Example 1   Factorise 123 2 +− xx . 
 
This trinomial cannot be factorised because 

( ) ( )( ) 813424 22 −=−−=− acb , a negative value. 
 
Example 2   Factorise ( ) 642 2 ++−= xxxf . 
 
The trinomial has a common factor of  −2, hence 
( ) ( )322 2 −−−= xxxf . 

For the resulting trinomial inside the brackets, 
( ) ( ) 163424 22 =−−−=− cb , a positive value; it can be 

factorised. 
 ( ) ( ) ( )( )132322 2 +−−=−−−= xxxxxf , by trial and error. 
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Example 3   Factorise rrxrxy 98282 2 +−= . 
 

( )4914298282 22 +−=+−= xxrrrxrxy        Common factors. 

For the resulting trinomial, ( ) ( ) 0494144 22 =−−=− cb , hence 
the two linear factors are the same. 

( )272 −=∴ xry . 
 
Example 4   Factorise 1224 −− xx  completely over Q. 

Rewrite the polynomial as ( ) ( ) 12222 −− xx  

( )( )34 22 +−= xx               Trial and error 

( )( )( )322 2 ++−= xxx       Difference of two squares 
 
Example 5   Factorise ( ) ( ) 35323 2 −+−+ xx . 
 
Do not expand. Replace 3+x  by y, then factorise by trial and 
error. 
( ) ( ) ( )( )5735235323 22 +−=−−=−+−+ yyyyxx  
( )( ) ( )( )845373 +−=++−+= xxxx  

 
Completing the square If you fail to find the linear factors of a 
quadratic trinomial by trial and error, try completing the square. 
 
Example 1   Factorise 262 +− xx  over R. 

2
2
6

2
6626

22
22 +






 −−






 −+−=+− xxxx  

( ) 7962996 22 −+−=+−+−= xxxx  

( ) ( ) ( )( )737373
22 +−−−=−−= xxx . 

 
Example 2   Factorise 632 2 −− xx  over R. 












−






−






 ×+−=



 −−=−− 3

4
3

2
3

2
1

2
323

2
32632

22
222 xxxxxx  












−






 −=












−






−
















+−=

16
57

4
323

4
3

4
3

2
32

222
2 xxx  












+






 −












−






 −=

























−






 −=

4
57

4
3

4
57

4
32

4
57

4
32

22

xxx  











+−










−−=

4
57

4
3

4
57

4
3 xx . 

Example 3   Factorise 72 24 −− xx  over R. 
 

( ) ( ) 711272 2222224 −+−−=−− xxxx  

( ) ( )( ) ( ) ( )222222 61612 −−=−−−= xxx

( )( )6161 22 +−−−= xx  

( )( ) ( )( )6161 22 −−+−= xx  














 −−













 +−=

2
2

2
2 6161 xx  






 −+




 −−




 ++




 +−= 61616161 xxxx . 

 
Example 4   Factorise 1624 +− xx  over R. 
 
Add 29x  to complete the square. 

( ) 2222224 991616 xxxxxx −++−=+−  

( )( ) 2222 9168 xxx −++=  

( ) ( ) ( )( )434334 22222 +++−=−+= xxxxxx . 
The two quadratic factors do not have linear factors, 

042 <− acbQ . 
 
Note: Examples 3 and 4 show two methods in completing the 
square for polynomials of the form ( ) CBxx +− 222 . 

If 042 >− CB , follow the method shown in example 3, i.e. add 
and subtract a constant to complete the square. 
If 042 <− CB , follow the method shown in example 4, i.e. add 
and subtract a 2x  term to complete the square. 
 
 
Sum/difference of two cubes Both forms can be factorised to a 
linear factor and a quadratic factor. The quadratic factor cannot 
be factorised further. 
 

( )( )2233 babababa +−+=+     

( )( )2233 babababa ++−=−  
 
Example 1   Factorise 542 3 −x  over R. 
 
The two terms in the cubic function have a common factor of 2. 

( ) ( ) ( )( )933232272542 23333 ++−=−=−=− xxxxxx . 
 
Example 2   Factorise 40625 3 +x  over R. 
 

( ) ( )( )3333 2558125540625 +=+=+ xxx  

( ) ( ) ( )( ) ( )( )410252552525255 222 +−+=+−+= xxxxxx . 
 

Example 3   Factorise 2
3

3 51000 +x  over R. 
 

( ) ( )332
3

3 51051000 +=+ xx  

( ) ( ) ( )( ) ( ) 




 +−+=

22 551010510 xxx

( )( )5510100510 2 +−+= xxx  

( )( )152205105 2 +−+= xxx . 
 
Example 4   Factorise ( ) 112 3 +−x  over R. 
 
Do not expand, use ‘the sum of two cubes’. 
( ) ( ) 333 112112 +−=+− xx  

( )( ) ( ) ( )( )22 112112112 +−−−+−= xxx  

( )( )1121442 2 ++−+−= xxxx ( )3642 2 +−= xxx . 
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Example 5   Factorise 646 −x  over R. 
 
Treat 646 −x  as difference of two squares. 

( ) ( ) ( )( )333323236 22264 +−=−=− xxxx  

( )( )( )( )422422 22 +−+++−= xxxxxx . 
 
If 646 −x  is treated as difference of two cubes, then 

( ) ( ) ( ) ( ) ( )( )2222222232326 222264 ++−=−=− xxxxx  

( )( ) ( )( )16422 222 +++−= xxxx  

( )( ) ( )( )22222 4416422 xxxxxx −++++−=  

( )( ) ( )( )2222 416822 xxxxx −+++−=  

( )( ) ( ) ( )( )222 2422 xxxx −++−=  

( )( )( )( )xxxxxx 242422 22 ++−++−= . 
 
 
Grouping The four terms in a cubic polynomial are grouped into 
two and two. The two groups are then factorised. Correct 
grouping gives a common factor in the two groups. 
 
Example 1   Factorise 483232 23 +−− xxx  over R. 
 
Group the first two terms and the last two. 

( ) ( )483232483232 2323 −−−=+−− xxxxxx  

( ) ( ) ( )( )1632321632 22 −−=−−−= xxxxx  

( )( ) ( )( )( )4432432 22 +−−=−−= xxxxx . 
 
Note: It is also possible to proceed by grouping the first and the 
third terms; and the second and the last terms. 
 
Example 2   Factorise 128 23 −+− xxx  over R. 
 

( ) ( ) ( )( ) ( )xxxxxxxxx −−−=−−−=−+− 2332323 212218128  

( ) ( ) ( )( ) ( )12112212 22 −−++−= xxxxx  

( )( ) ( )1212412 2 −−++−= xxxxx  

( )( ) ( )( )141212412 22 ++−=−++−= xxxxxxx . 
 
 
The factor theorem  
 
Consider a polynomial ( )xP  that has α−x  as a linear factor. 
Then ( ) ( ) ( )xQxxP α−= , where ( )xQ  is a polynomial one 
degree lower than ( )xP , obtained by expanding and comparing 
coefficients, or dividing ( )xP  by α−x .  
Replacing x by α  in ( ) ( ) ( )xQxxP α−= , 
( ) ( ) ( )αααα QP −= . Hence ( ) 0=αP . 

 
Conversely, for any polynomial ( )xP , if ( ) 0=αP , then α−x  
is a factor of ( )xP . This statement is known as the factor 
theorem, and can be used to find the linear factors of a 
polynomial if other methods failed. 

 
 
The factor theorem is best used for polynomials with linear 
factors of rational coefficients. The value(s) of α is found by 
trial and error. The possible values of α  for trying depend on 
the first and last coefficients of 

( ) nn
nn axaxaxaxP ++++= −
−

1
1

10 ...... ,  
0...

...
aoffactora
aoffactora n±=α . 

If all these α  values give ( ) 0≠αP , it does not necessarily 
mean that ( )xP  has no linear factors, because the coefficients of 
the linear factor(s) may be irrational. 
 
Example 1   Use the factor theorem to find a linear factor of 

2723 23 −−− xxx , then find the quadratic factor and hence all 
the linear factors. 
 
Let ( ) 2723 23 −−−= xxxxP . The possible values of α  for 

testing are 
3,1
2,1

±=α , i.e. 2,1,
3
2,

3
1

±±±±=α . 

( ) ( ) ( ) ( ) 021712131 23 ≠−−−=P . 

( ) ( ) ( ) ( ) 021712131 23 =−−−−−−=−P , 1+∴x  is a factor. 
Divide ( )xP  by 1+x  to find the quadratic factor. 
 
                                      253 2 −− xx  

                  )1+x 2723 23 −−− xxx  

                        ( )23 33 xx +−  

 

                                   xx 75 2 −−  
                               ( )xx 55 2 −−−  
                                           

                                             22 −− x  
                                        ( )22 −−− x         

                                  

                                                        0 
Hence ( ) ( )( ) ( )( )( )21312531 2 −++=−−+= xxxxxxxP . 
 
Another possible outcome: 

02
3
17

3
12

3
13

3
1 23

=−





−−






−−






−=






−P , 

3
1

+∴x  is a 

factor. 
                                        633 2 −− xx  
 

                   )3
1+x 2723 23 −−− xxx  

                          ( )233 xx +−  

 

                                     xx 73 2 −−  
                                  ( )xx −−− 23  
 
 

                                                26 −− x  
                                           ( )26 −−− x  

                                                                                                                                                                                                                                                                                                                                      
 

                                                           0 

Hence ( ) ( ) ( )2
3
13633

3
1 22 −−






 +=−−






 += xxxxxxxP  

( )( )12
3
13 +−





 += xxx . It is equivalent to the previous result. 
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Example 2   Given 1+x  is a factor of 2993 234 −−−+ xxxx , 
find the cubic factor ( )xQ  such that 

( ) ( )xQxxxxx 12993 234 +=−−−+ . 
 
Let ( ) dcxbxaxxQ +++= 23 , then 

( )( )dcxbxaxxxxxx ++++=−−−+ 23234 12993 .  

Expand to obtain 2993 234 −−−+ xxxx  
( ) ( ) ( ) dxdcxcbxbaax +++++++= 234 . 

Compare the coefficients on both sides, 3=a , 1=+ ba , 
9−=+ cb , 9−=+ dc  and 2−=d . Hence 2−=b , 7−=c . 

( ) 2723 23 −−−=∴ xxxxQ . 
This example illustrates an alternative method in finding ( )xQ  
to long division shown in the last example. 
 
 
Example 3   Use the factor theorem to find the linear factors of 

23234 +−+− xxxx . 
 
Let ( ) 23234 +−+−= xxxxxP . Test 2,1 ±±=α . 

( ) ( ) ( ) ( ) ( ) 02131111 234 ≠+−−−+−−−=−P  

( ) ( ) ( ) ( ) ( ) 02131111 234 =+−+−=P , 1−∴x  is a factor. 
Hence ( ) ( ) ( )xQxxP 1−= . 
Use long division or comparing coefficients to find 
( ) 23 −+= xxxQ . 

Hence ( ) ( )( )21 3 −+−= xxxxP . Use the factor theorem on 

( ) 23 −+= xxxQ  to find its linear factor. Test 2,1 ±±=α . 

( ) ( ) ( ) 02111 3 =−+=Q , 1−∴x  is a factor of ( )xQ . 
Hence ( ) ( )( ) ( )xTxxxP 11 −−= . ( )xT  is quadratic and found by 
long division of ( )xP  by the expansion of ( )( )11 −− xx , or 
comparison of coefficients as discussed in example 2, 
( ) 22 ++= xxxT . 

( ) ( )( )( )211 2 ++−−=∴ xxxxxP . 
 
The remainder theorem When a polynomial ( )xP  is divided 
by a linear binomial βα −x , the remainder can be found quickly 
without actually carrying out the division. 
 
Since                              ( )xQ            Quotient 

 

                    )βα −x      ( )xP             Dividend (Polynomial) 
 
 
         Divisor                     R              Remainder 
 

( ) ( ) ( ) RxQxxP +−=∴ βα . 

When 
α
β

=x , ( ) RRxQP =+







−






=






 β

α
βα

α
β ,  

i.e. the remainder 





=
α
βPR  when ( )xP  is divided by βα −x . 

This is known as the remainder theorem. 
 

 
 
Example 1   Find the remainder when ( ) 1152 34 −+−= xxxxP  
is divided by (i) 5+x , (ii) 32 −x , (iii) ax 2− . 
 
(i)   ( ) ( ) ( ) ( ) 133911555525 34 =−−+−−−=−= PR  

(ii)   
4

1311
2
35

2
3

2
32

2
3 34

=−





+






−






=






= PR  

(iii)  
( ) ( ) ( ) ( ) 111083211252222 3434 −+−=−+−== aaaaaaaPR  

 
 
Example 2   Given that 2−x  is a factor of 23 23 −++ qxpxx  
and the remainder is 20−  when the cubic polynomial is divided 
by 2+x . Find the values of p and q. 
 
Use the factor theorem and the remainder theorem to set up two 
simultaneous equations for p and q. 
Let ( ) 23 23 −++= qxpxxxP . 

2−x  is a factor of ( )xP , ( ) 02 =∴P , 

( ) ( ) ( ) 022223 23 =−++∴ qp ,              112 −=+∴ qp  ……(1) 
The remainder is 20−  when divided by 2+x , ( ) 202 −=−∴P , 

( ) ( ) ( ) 2022223 23 −=−−+−+−∴ qp ,     32 =−∴ qp  ……(2) 
 
Solve eqs (1) and (2) for p and q. 
(1) + (2), 84 −=p , 2−=∴ p  
(1) − (2), 142 −=q , 7−=∴q  
 
Exponential (index) laws 
 
 
 
 
 
 
 
 
 

Good to know: 10 =a , pp aa =
1

, ( )qpp
q

aa =  or p qa . 
 
 

Example 1   Simplify ( )
( ) nn

nn

bab

bab
44

32

+

− , and express with positive 

indices. 
 
( )
( )

( )
( )nnn

nnn

nnn

nnn

nn

nn

bab
bab

bba
bba

bab

bab
+
−

=
+
−

=
+

−
4

222

54

422

54

42

 

 
( ) ( )( )
( )

( )( )
( )nn

nnnnn

nn

nnn

ba
babab

ba
bab

+
+−

=
+
−

=
−− 2222

 

n

nn

b
ba

2

−
= . 

 
 
 

1.   nmnm aaa +=×  

2.   n
n a

a
−=

1 ;  m
m

a
a

−
=

1 ;  nm
n

m

a
a
a −=  

3.   ( ) mnnm aa =  

4.   ( ) nnn baab =  
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Example 2   Simplify 
ee

eee
x

xx

−
+−

+

++

1

112 34 . 

 
( )

( )
( ) ( )( )

( )1
34

1
3434

202

1

112

−
+−

=
−

+−
=

−
+−

+

++

x

xx

x

xx

x

xx

e
eee

ee
eee

ee
eee  

( )( )
( ) 3

1
13

−=
−

−−
= x

x

xx

e
e

ee  for 0≠x . 

Note: It is necessary to state that 0≠x , 
ee

eee
x

xx

−
+−

+

++

1

112 34
Q  is 

undefined for 0=x  whilst 3−xe  is defined for all x, ∴ they 
cannot be equal at 0=x . 
 
 

Example 3   Simplify 
2
1

2
3

2
3

2
5

105

2

pp

pp

+

+ . 

( )

( ) 55
25

2

105

2 2
1

2
3

2
1

2
3

2
1

2
3

2
3

2
5

pp

pp

pp

pp

pp
==

+

+
=

+

+
−

. 

 
 

Example 4   Simplify ( ) ( )2
3

1 100102100 +×+= +nnnf . Show 
that ( ) ( )010002 ff = . 
 

( ) ( )( )23222
3

1 101010210100102100 +××+=+×+ + nnnn  

( ) ( )( )( ) ( )( ) ( )32
3

22
3

22
10101010101010210 +=+=++= nnnn  

( ) ( )31010 +=∴ nnf . 

( ) ( ) 330 1110100 =+=f ; 

( ) ( ) ( ) ( ) ( )010001110111011010102 333332 ff =×=×==+= . 
 
 
 

Example 5   Simplify 

( )3
2

6

3 25

6

26

yx

yx×
, express in positive indices. 

 

( )
( )

( ) ( )3
1

6

3
2

3
5

3
1

2
1

3
2

6

3
1

25

3
2

6

3 25

32

232

6

26

6

26

yx

yx

yx

yx

yx

yx

×

××
=









=

×
 

3
1

3
1

3
2

3
1

3
1

3
2

3
1

23
1

3
1

3
2

3
5

3
4

3232
32

23

x

yyx
yx

yx ×
=×=

×

×
=

−
. 

 
 
 
 
 
 

 
 
Logarithm laws 

 
 
Law 4 shows the relationship between palog  and pblog . 
 
Good to remember: 01log =a ; 1log =aa ;  

palog  is undefined for 0≤p ; 
0log <pa  for 10 << p ; 0log >pa  for 1>p . 

For even n, n
a plog  is defined for all Rp∈  whilst pn alog  is 

defined only for 0>p , 

pnp a
n

a loglog =∴  for 0>p , and 

pnp a
n

a loglog ≠  for 0≤p . 
 
The following graphs of 2log xy e=  and xy elog2=  illustrate 
the point. 
 

 
 
 

 
 
 

For 0, >qp , 
1.   ( )pqqp aaa logloglog =+  

2.   







=−

q
pqp aaa logloglog ; 








=−

q
q aa

1loglog  

3.   pnp a
n

a loglog =  

4.   
b
p

p
a

a
b log

log
log =  
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Example 1    Evaluate 







32
1log5 2 . 

 

252log552log5
2
1log5

32
1log5 2

5
2522 −=×−==






=






 − . 

 
 
Example 2   Simplify ( ) ( )2

10
2

10 2log33log2 xyyx − . 
 

( ) ( ) ( ) ( )32
10

22
10

2
10

2
10 2log3log2log33log2 xyyxxyyx −=−  

( ) ( ) 







=








=−= 41063

24

10
63

10
24

10 8
9log

8
9log8log9log

y
x

yx
yxyxyx . 

 
Example 3   Evaluate 10log3 . 
 
Your calculator has only log (i.e. 10log ) and ln (i.e. elog ). 

0959.2
3log

10log
10log

10

10
3 == , or 0959.2

3log
10log

10log3 ==
e

e . 

 

Example 4   Show that xxx 284 log
6
5log2log3 =− . 

 
Change both logarithms on the left side of the identity to base 2. 

.log
6
5log

3
2

2
3

log
3
2log

2
3

2log
log2

2log
log3

8log
log2

4log
log3

log2log3

22

223
2

2
2

2

2

2

2

2

2
84

xx

xx
xx

xx
xx

=





 −=

−=−=

−=−

 

 

Example 5   Show that e
e

10log
10log

1
= . 

 
Change both sides to a common base b. 

10log
log

log
10log

1

b

b

b

b

e

e

LHS == . 

10log
log

b

b e
RHS = . RHSLHS =∴ . 

 
Example 6   Given qp e=10 , (i) find q in terms of p, (ii) find p 
in terms of q. 
 
(i) qp e=10 , q

e
p

e elog10log = , eqp ee log10log = , 
10log epq =∴ . 

(ii) Since 10log epq = , eqqp
e

10log
10log

==∴ . 

These two results show the way to change the base of an 
exponential function. 
 

10log10 epp e= ; eqqe 10log10= . In general, axx bba log= . 

 
 
 
Example 6   Change x5  to base 10 and base e. 
 

xxx 6990.05log 10105 10 ≈= ; xxx ee e 6094.15log5 ≈= . 
 
 
Equivalent relations 
 
Examples are:            yxxy ±=⇔= 2 ;  

                                   ( ) ( )ySinxxSiny 1−=⇔= ; 

                                   yxy x
10log10 =⇔= ;  

                                   yxey e
x log=⇔= . 

 
In each of the above cases, both left and right statements give 
exactly the same relationship between x and y, i.e. they are 
equivalent. Try to plot the graphs of a pair of equivalent 
relations. They are the same plot. The left relation uses y as the 
subject, and the right relation uses x. In the last two examples, 
the left relations are expressed in index (exponential) form 
whilst the right relations are in logarithm form. 
 
Inverse relations 
 

xey =  and yx elog=  are equivalent relations, but  
xey =  and yex =  are inverse relations, and so are  

xy elog=  and yx elog= . (Read each relation carefully) 
In inverse relations, the x and y-coordinates of all the points are 
interchanged. 
 

 
 

    
 
          xey =  and yex =                   xy elog=  and yx elog=  



© Copyright itute.com 2005                                                                                                                                              Algebra 7

 
 

xey =  and yex =  are inverses of each other. Express 
yex = with y as the subject, xy elog= .  

 
xy elog=  and yx elog=  are inverses of each other. Express 

yx elog=  with y as the subject, xey = .  
 
Hence  xey =  and xy elog=  are inverses of each other, as 
discussed previously in Functions and Graphs. 
 
Other examples of inverse pairs are:  

)(xSiny =  for 



−

2
,

2
ππ  and ( )xSiny 1−= ;  

2xy =  for 0≥x  and xy = ;  
2xy =  for 0<x  and xy −= . 

 

 
 

 
 

 
 

 
 
Relations and functions 
 
A relation is a set of ordered pairs (points). A function is a 
relation such that no two points have the same x-coordinate. 
Use the vertical line test to determine whether a relation is a 
function (cuts through only one point) or not (cuts through more 
than one point). If it is a function, then it is either a many-to-one 
function or a one-to-one function. If it is not a function, then it 
is either a many-to-many relation or a one-to-many relation. 
 

  
 

 
 
 
Inverse functions 
 
Every relation has an inverse that may or may not be a function. 
If a relation is a one-to-many relation, then its inverse is a many-
to-one function. If a relation is a one-to-one function, then its 
inverse is also a function (a one-to-one function). If a relation is 
a many-to-many relation or many-to-one function, then its 
inverse is not a function. 
 
Use the horizontal line test to determine whether the inverse is 
a function (cuts through only one point) or not (cuts through 
more than one point). 
 
Example 1   The following two graphs show the original relation 

( )21+= xy  that is a many-to-one function, and its inverse 

( )21+= yx  that is not a function. 
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Example 2   The relations )(xSiny =  for 



−

2
,

2
ππ , 2xy =  for 

0≥x  and 2xy =  for 0<x  are one-to-one functions, ∴ their 
inverses are also one-to-one functions. 
 
 
If a relation is a function, function notations can be used to 
represent it, e.g. 2xy =  for 0<x , ( ) 2,: xxfRRf =→− . Since 

its inverse xy −=  is also a function, use 1−f  to denote 

inverse function, ( ) xxfRRf −=→ −+− 11 ,: . 
 
 
Example 3   Restrict the domain of xy cos=  to produce a one-
to-one function. Use function notations to represent it and its 
inverse function. 
 
There are an infinite number of possible restrictions of the 
domain, e.g. [ ]π,0 . Let the function with this restriction be 

[ ] ( ) xxgRg cos,,0: =→π . 
 
The following graphs show that g and 1−g  are both one-to-one 

functions. The graph of 1−g  is obtained by reflecting g in the 
line .xy =  
 

 
 
g has a range of [ ]1,1− , this becomes the domain of 1−g . 
The inverse of xy cos=  is yx cos= , the equivalent of 

yx cos=  is xy 1cos−= . 

[ ] ( ) xxgRg 111 cos,1,1: −−− =→−∴ . 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Example 4   Given a function with equation 

( )
2
513log

2
1

+−= xy e , find the domain, range and equation of 

its inverse with y as the subject. 
 

The given function is defined for 013 >−x , i.e. 
3
1

>x . ∴ its 

domain is 





 ∞,

3
1 . Its range is R. Hence the domain and range 

of its inverse are R and 





 ∞,

3
1  respectively. 

The inverse of ( )
2
513log

2
1

+−= xy e  is ( )
2
513log

2
1

+−= yx e . 

Transpose to make y the subject. ( )13log
2
1

2
5

−=− yx e , 

( )13log52 −=− yx e , the equivalent is 5213 −=− xey , 

13 52 += −xey , ( )1
3
1 52 += −xey  or 

3
1

3
1 52 +−xe . 

 
 
Example 5   Given ( ) 13,: 2 −=→ xexfRRf . Find 1−f . 
 
f  is a one-to-one function, 1−∴ f  exists. The equation for 

graphing f  is 13 2 −= xey . f  has ( )∞− ,1  as its range, ∴ the 

domain of 1−f is ( )∞− ,1 . The graph of 1−f  is the reflection of f 
in the line xy = . 
 

 
 
The equation of 1−f  is 13 2 −= yex . Transpose to make y the 
subject.  

13 2 −= yex , yex 231=+ , yex 2

3
1
=

+ , the equivalent is 







 +

=
3

1log2 xy e , 





 +

=
3

1log
2
1 xy e . 

Hence ( ) ( ) 





 +

=→∞− −−

3
1log

2
1,,1: 11 xxfRf e . 
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Example 6   Given ( ] ( ) 3
1

2,5,1: +
+

=→−
x

xjRj , find the 

domain, range, asymptote(s) and equation of its inverse. 
 
Consider the given function j: Domain ( ]5,1− . Vertical 
asymptote 1−=x . Note that horizontal asymptote does not exist 
because the function has an end point at 5=x , 

3
103

15
2

=+
+

=y  . Range 




 ∞,

3
10 . Equation 3

1
2

+
+

=
x

y . 

 

The inverse of j: Domain 




 ∞,

3
10 . Range ( ]5,1− . Horizontal 

asymptote 1−=y . Equation 3
1

2
+

+
=

y
x . Make y the subject 

by transposition. 
1

23
+

=−
y

x , 
3

21
−

=+
x

y , 1
3

2
−

−
=

x
y . 

 
 

 
 
 
 

Example 7   Split up 
( )

2
1

1
2 −

+
=

x
y  into two one-to-one 

functions h and k, and find 1−h  and 1−k . 
 

( )
2

1
1

2 −
+

=
x

y  is a many-to-one function and it is symmetrical 

about the vertical asymptote 1−=x . Restrict the function to 
domain ( )1,−∞−  to form one-to-one function h. Restrict the 
function to domain ( )∞− ,1  to form one-to-one function k. 
 

Hence ( ) ( )
( )

2
1

1,1,: 2 −
+

=→−∞−
x

xhRh , 

and     ( ) ( )
( )

2
1

1,,1: 2 −
+

=→∞−
x

xkRk . 

 
The graphs of 1−h  and 1−k  are obtained by reflecting the graphs 
of h and k in the line xy = . 
 
 
 

 
 

 
 
Both h and k have the same horizontal asymptote 2−=y  and 

∴ the same range ( )∞− ,2 . ∴ 1−h  and 1−k  have the same 
vertical asymptote 2−=x  and domain ( )∞− ,2  . The inverse of  

( )
2

1
1

2 −
+

=
x

y  is  
( )

2
1

1
2 −

+
=

y
x . The equivalent relation to 

( )
2

1
1

2 −
+

=
y

x  is obtained by transposition to make y the 

subject. 
 

( )
2

1
1

2 −
+

=
y

x ,  
( )21

12
+

=+
y

x ,  ( )
2

11 2

+
=+

x
y , 

2
11
+

±=+
x

y ,  1
2

1
−

+
±=

x
y . 

Hence ( ) ( ) 1
2

1,,2: 11 −
+

−=→∞− −−

x
xhRh , 

and     ( ) ( ) 1
2

1,,2: 11 −
+

=→∞− −−

x
xkRk . 

 
 
Example 8    Find the domain and equation of the inverse of 

1
3
1

9
1 2

+





 −= xy , where 

3
8

−≥x . 

 

The given function has an end point 





− 2,

3
8 , and a turning 

point 





 1,

3
1  that is the lowest point of the function. Hence the 

range is [ )∞,1 , not [ )∞,2 . ∴domain of the inverse is [ )∞,1 . 
 

Equation of the inverse is 1
3
1

9
1 2

+





 −= yx . Make y the 

subject, 
2

3
1

9
11 






 −=− yx , ( )

2

3
119 





 −=− yx , 

( )19
3
1

−±=− xy , 13
3
1

−±=− xy , 
3
113 +−±= xy . 

Note: (1) The inverse is not a function. (2) The inverse has an 

end point 





 −

3
8,2 . 
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Inverse functions undo each other 
 
When a one-to-one function f and its inverse function 1−f  are 

used to form composite function ff o1−   or 1−ff o , then 

( ) xxff =− o1 , ( ) xxff =−1o , i.e. they undo each other. 
 
Example 1   Given ( ) ( )32−= xxf , find ( )xf 1− . Show that they 
undo each other. 
 
Equation of f is ( )32−= xy , ∴equation of 1−f  is ( )32−= yx , 

i.e. 23 += xy , ( ) 231 +=∴ − xxf . 
 

( ) ( )( ) ( ) ( ) xxxfxffxff =+−=+== −− 222 3 3311 o  

( ) ( )( ) ( )( ) ( ) xxxfxffxff ==−== −−− 333111 2o . 
 
Example 2   Given ( ) xxg elog= , state ( )xg 1− , find ( )xgg o1−  

and ( )xgg 1−o , and simplify. 
 

( ) xexg =−1 . 

( ) ( )( ) ( ) xeexggxgg xxg e ==== −− log11 o . 

( ) ( )( ) xexggxgg x
e === −− log11o . 

 

Example 3   Simplify ( ) ( )21log1log2 −−+ xx eee . 
 

( ) ( ) ( ) ( )( )211log1log1log1log2 222 −−+−−+ = xxxx eeee ee  

( )
( )

2
1

1
1log2

2
1

1
1log

2
1

1
1log

2

2

2














=













=














=









−
+









−
+

−

+

x
x

x
x

x
x

eee

eee  

==








−
+
1
1log

x
x

e

e
1
1

−
+

x
x . 

 
 
Solving exponential equations algebraically 
 
Example 1   Solve the following equations. 
(a)   84 =x    (b)   01.010 32 =−x    (c)   11 104 −+ = xx . 
 

(a)   84 =x , ( ) 32 22 =
x , 32 22 =x , 32 =∴ x , 

2
3

=x . 

(b)   01.010 32 =−x , 2
32

10
110 =−x , 232 1010 −− =x , 

232 −=−∴ x , 
2
1

=x . 

(c)   11 104 −+ = xx , 4 and 10 cannot be changed to the same base. 
Take the log (to base 10 is simpler than to base e in this case) of 
both sides of the equation. 1

10
1

10 10log4log −+ = xx , 
( ) 14log1 10 −=+ xx , ( ) 16021.01 −=+ xx , 

16021.06021.0 −=+ xx , 0259.4=x . 

 
 
Example 2   Solve 65 23 =+xe . 
 

65 23 =+xe , 2.123 =+xe , the equivalent is 2.1log23 ex =+ , 

22.1log3 −= ex , ( )22.1log
3
1

−=∴ ex  in exact form or 

6059.0−≈x . 
 
 
Example 3   Solve xx ee −+ = 22 38 . 
 

xx ee −+ = 22 38 , 
8
3

2

2

=
−

=

x

x

e
e , ( )

8
322 =−−− xxe , 

8
32 =xe , the equivalent 

is 





=

8
3log2 ex , 






=

8
3log

2
1

ex  in exact form or 4904.0−≈x . 

 
Alternative method: xx ee −+ = 22 38 , 038 22 =− −+ xx ee , 

( ) 038 22 =−− xx ee . Since 02 ≠−xe , 038 2 =−∴ xe , 
8
32 =xe  etc. 

 
 
Example 4   Solve 0143 2 =+− xx ee . 
 
( ) ( ) 0143

2
=+− xx ee ,  

( )( ) 0113 =−− xx ee ,      [factorise by trial and error] 

either 013 =−xe  or 01=−xe , 

3
1

=∴ xe  or 1=xe , i.e. 





=

3
1log ex  or 0=x . 

 
 
Example 5   Solve 0143 2 =++ xx ee . 
 
This equation has no real solutions for x, because all three terms 
are greater than 0, ∴sum > 0. 
 
 
Example 6   Solve 0442 =−− xx ee . 
 
( ) ( ) 044

2
=−− xx ee  cannot be factorised over Q, set of rational 

numbers, ∴use the quadratic formula to obtain 

( ) ( ) ( )( )
( )12

41444 2 −−−±−−
=xe , 222 ±=xe . Since 0>xe , 

222 +=∴ xe , hence ( )222log += ex  in exact form or 
5745.1≈x . 

 
 
Example 7   Find k such that the curve 23 +−= kxey  passes 
through ( )3,2− . 
 
When 2−=x , 3=y , 2233 +=∴ ke , 122 =+ke , 

022 =+k , 1−=∴k . 
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Example 8   Find a and b such that the curve 1+= bxaey  passes 
through the points ( )2,1−  and ( )4,1 . 
 
Use the two points to set up two simultaneous equations: 
( ) 212,1 =+→− −bae , 1=∴ −bae ………(1) 

( ) 414,1 =+→ bae , 3=∴ bae ………….(2) 

Eq.(2)/eq.(1), 
1
3

=
−b

b

ae
ae , 32 =be , 3log2 eb = , 

3log3log
2
1

eeb ==∴ ……(3) 

Substitute eq.(3) in eq.(2), 33log =eae , 33 =a , 

3
3

3
==∴a . 

 
Example 9   Find b and c such that the curve cey bx += 2  passes 
through the points ( )6,2  and ( )10,4 . 
 
( ) 626,2 2 =+→ ce b , ce b −=∴ 62 2 ………...(1) 

( ) 10210,4 4 =+→ ce b , ce b −=∴ 102 4 ……..(2) 

Eq.(2)/eq.(1), 
c
c

e
e

b

b

−
−

=
6

10
2
2

2

4

, 
c
ce b

−
−

=∴
6

102 ………(3) 

Substitute eq.(3) in eq.(1), c
c
c

−=







−
− 6

6
102 , 

( ) ( )26102 cc −=−∴ , ( ) ( ) 01026 2 =−−− cc , 

( ) ( ) 08626 2 =−−−− cc .  
Factorise to obtain ( )[ ] ( )[ ] 02646 =+−−− cc . 
Hence either 046 =−− c , i.e. 2=c , or 026 =+− c , i.e. 

8=c . The second result is not possible because it leads to an 
impossibility 22 2 −=be . 2=∴c ……(4) 
Substitute eq.(4) in eq.(1), 42 2 =be , 22 =be , 2log2 eb = , 

2log2log
2
1

eeb == . 

 
 
 
     
Solving logarithmic equations algebraically 
 
Example 1   Solve the following equations. 

(i) 5log2 =x    (ii) ( ) 31log 2
2 =−x    (iii) 5.11log2 =








x
 

 
(i)   5log2 =x , the equivalent is 52=x , 32=x . 

(ii)  ( ) 31log 2
2 =−x , the equivalent is 32 21=−x , 92 =x , 

3±=x . 

(iii) 5.11log2 =







x
, the equivalent is 5.121

=
x

, 5.12−=x  or 2
3

2
−

 

or 0.3536 
 
 
 

 
 
 
Example 2   Solve 5.2243log =x . 
 

5.2243log =x , the equivalent is 5.2243 x= , 5.253 x= , 

( ) 5.22
1

53 x= , 5.25.23 x= , 3=∴x  
 
 
Example 3   Solve 35log =xx , where 0>x . 
 

35log =xx , 3log5log =+ xxx , 315log =+x , 25log =x , the 

equivalent is 52 =x , 5=∴x .  
 
 
Example 4   Solve ( ) 11loglog 1010 =+− xx . 
 

( ) 11loglog 1010 =+− xx , 1
1

log10 =







+x
x , the equivalent is 

110
1
=

+x
x , ( )110 +=∴ xx , 1010 += xx , 109 −=x , 

9
10

−=x . 

 
 
Example 5   Solve ( ) ( ) 135log35log 1010 =−++ xx . 
 

( ) ( ) 135log35log 1010 =−++ xx , 

( )( ) 13535log10 =−+ xx ,  

the equivalent is ( )( ) 1103535 =−+ xx ,  

1035 2 =−∴ x , 252 =x , 5±=x . 
 
 
Example 6   Solve ( ) ( ) 01log2log2 =+−− xx ee . 
 

( ) ( ) 01log2log2 =+−− xx ee , ( ) 0
1

2log
2

=
+
−

x
x

e , 

( ) 1
1

2 2

=
+
−

x
x , ( ) 12 2 +=− xx , 1442 +=+− xxx , 

0352 =+− xx , 
2

12255 −±
=∴x , 

i.e. 
2

135 +
=x  or 

2
135 − . Only the first solution is correct 

because 2>x  for ( )2log2 −xe  to be defined. 
 
 
Example 7   ( )1,2−  is a point on the curve ( )axy e −= 1log2 . 
Find a.  
 

( ) ( )( )21log211,2 −−=→− ae , ( )ae 21log
2
1

+= ,  

2
1

21 ea =+ , ( )1
2
1

−= ea . 
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Example 8   Find a and b such that 1log ++= baxy e  passes 

through the points ( )1,0  and 







2
3,1 . 

 
( ) 1log11,0 +=→ be , 0log =∴ be , 1=b , 1=∴b ……(1) 

1log
2
3

2
3,1 ++=→





 bae , 

2
1log =+ bae , 2

1

eba =+ , 

eba =+∴ ……(2) 
Substitute eq.(1) in eq.(2), 1−= ea . 
 
 
Algebraic solution of equations involving circular functions 
 
It is prudent to consider the domain when solving an equation 
involving one or more circular functions. 
In this section only equations involving only one of the circular 
functions are considered. 
In solving such equations algebraically, always transpose an 
equation to make ( )kxsin , ( )kxcos  or ( )kxtan  the subject of the 
equation. 
 
Example 1   Solve ( ) 22sin3 −=x , where 60 << x .  
 
The domain is 60 << x , or 1220 << x . 

( ) 22sin3 −=x , ( )
3
22sin −=x . 

Since ( )x2sin  has a negative value, 
3
2

− , then the ‘angle’ x2  

must be in the third or fourth quadrant. 
 
 
 
                                            2x 
 
                                        a                        a 
 
 
 

7297.0
3
2sin 1 =





= −a  (Calculator) 

7297.02 += πx , 7297.02 −π , 7297.03 +π , 7297.04 −π  
,8713.32 =x 5.5535, 10.1545, 11.8366 
,9357.1=∴x 2.7767, 5.0772, 5.9183 

 

Example 2   Find the exact solution(s) of 03
2

cos32 =−





θ , 

where πθπ 44 <<− . 
 

The domain is πθπ 44 <<− , or πθπ 2
2

2 <<− . 

03
2

cos32 =−





θ , 

2
3

2
cos =






θ . 

Since 







2
cos θ  has a positive value, 

2
3 , ∴ the ‘angle’ 

2
θ  must 

be in the first or fourth quadrant. 
 

 
 
 
 
 
                                                                         a 
                                                                                                  
                                                                                         
                                                                               
                                                

62
3cos 1 π

=









= −a  

,
6

2
2

ππθ
+−=  

6
π

− , 
6
π , 

6
2 ππ −    

6
11

2
πθ

−=∴ , 
6
π

− , 
6
π , 

6
11π   ,

3
11πθ −=∴

3
π

− , ,
3
π

3
11π . 

 
 
Example 3   Find the exact coordinates of the intersections of 

( ) 12sin3 += xy  and ( ) 12cos3 += xy , where ππ <<− x . 
 
Solve the two equations simultaneously to find the intersections. 

( ) 12sin3 += xy ………(1)        ( ) 12cos3 += xy ……(2) 
The domain is ππ <<− x , or ππ 222 <<− x . 
Substitute eq.(1) in eq.(2), ( ) ( ) 12cos312sin3 +=+ xx , 

( ) ( )xx 2cos32sin3 =∴ , ( )
( ) 3

3
2cos
2sin

=
x
x , ( )

3
12tan =x . 

Since ( )x2tan  has a positive value, 
3

1 , the ‘angle’ x2  must be 

in the first or third quadrant. 
 
 
 
                                                                 a 
 
 
 
 
 

63
1tan 1 π

=







= −a  

,
6

22 ππ +−=x ,
6
ππ +− ,

6
π

6
ππ + ,  

6
112 π

−=∴ x , ,
6

5π
−

6
π , 

6
7π , 

12
11π

−=∴x , ,
12
5π

−
12
π , 

12
7π . 

Substitute each of these (2x) values in eq.(1), 

2
51

2
131

6
11sin3 =+






=+






−=

πy , 

2
11

2
131

6
5sin3 −=+






−=+






−=

πy , 

2
51

2
131

6
sin3 =+






=+






=
πy , 

2
11

2
131

6
7sin3 −=+






−=+






=
πy . The coordinates are 







−

2
5,

12
11π , 






 −−

2
1,

12
5π , 








2
5,

12
π  and 






 −

2
1,

12
7π . 
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Example 4   Solve ( ) ( ) ( )xxx cossinsin 2 =  for x, where 

2
0 π

≤≤ x . Note: ( )x2sin  is the proper notation for ( )( )2sin x . 

 
Caution: Do not divide both sides of the equation by ( )xsin , 
because ( ) 0sin =x  is a possibility. See below. 

( ) ( ) ( )xxx cossinsin 2 = , ( ) ( ) ( ) 0cossinsin 2 =− xxx , common 
factor, ( ) ( ) ( )( ) 0cossinsin =− xxx . 
∴either ( ) 0sin =x , 0=∴x , 

or ( ) ( ) 0cossin =− xx , ( ) ( )
( ) ( )xx

xx
cos

0
cos

cossin
=

−  for ( ) 0cos ≠x , 

( ) 01tan =−∴ x , ( ) ,1tan =x
4
π

=x . 

The two possible solutions for x are 0, 
4
π .  

 

Example 5   Find t when 12
12

sin10 −





=

tx π  is a minimum, 

where 480 << t . 
 

The domain is 480 << t , or ππ 4
12

0 <<
t . 

Minimum of x is 22− , it occurs when 1
12

sin −=





 tπ , 

2
3

12
ππ

=∴
t , 

2
7π . 18=∴t , 42. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 


