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Algebra

The binomial theorem

n
>

This theorem is used to expand expression of the form (p + q)
where 7 is a positive integer.

(p+4)'="Cop"q"+"C,p" ¢ +"C,p"2q* + .. t"C, p'q
Example 1 Expand (2x-3)".

(2x-3)'=*c,(2x) (- 3)"+*C, (2x)* (- 3) +*C, (2x)* (- 3)°
+1C;(2x) (=3) +*C, (2x)' (- 3)*
=16x* —96x> +216x* —216x + 81

Example 2 Find the coefficient of the term containing x° in the

. 9 .
expansion of (3x - a) , where a is a constant.

The required term is °C; (3x)° (- a)’ .

The coefficient is °C;(3)°(— a)’ =-612364".

Factorisation of polynomial functions

Not all polynomials can be factorised analytically (by algebraic
methods). The following methods are applicable to those

polynomials that have factors involving rational numbers and in
some cases, surds.

Common factors Look for common factors and separate them

from the terms of the polynomial by means of the distributive
law in reverse. This is always the first step in all factorisations.

Example Factorise f(x)=25x" —10x +§x .

f(x)=25x" —10x* + %x =(5)(5 wxx — (5)2)x + (5{%])( CAll
three terms have common factors 5 and x.

Hence f(x)= Sx(Sxx —2x+ %) = Sx(Sx2 -2x+ %j :

Difference of two squares Rewrite the polynomial in the form
a® —b? that can be factorised as (a —b)a +b).

Note: Polynomials in the form of sum of two squares cannot be
factorised.

Example 1 Factorise 36x” —2—15.

The polynomial has no common factors.

36x> —%:(m)2 —(%T =[6x—%j(6x+%j .
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Example 2 Factorise y =27x" —12x .

Separate the common factors 3 and x from the two terms, rewrite
the resulting two terms as difference of two squares and then
factorise.

»=3x(0x” - 4)=3x((3x) =2 )=3x(3x — 2)(3x + 2).

Example 3 Factorise 7x° —196.

Separate the common factor 7 from the two terms, rewrite the
resulting two terms as difference of two squares and then
factorise.

7x? —196 = 7(x* —28):7();2 —(2\/7)2):7(x—2\/7Xx+2\/7).
Example 4 Factorise x* —9 over Q.

Rewrite the binomial as difference of two squares and then
factorise.

x* —92()(2)2 -32 :(x2 —3)x? +3)

=(x2 —(\/E)zj(xz +3)=(x—\/§Xx+\/§Xx2 +3)

Example 5 Factorise (Zx - 3)2 -5 overR.

Do not expand. Express the polynomial as difference of two
squares and then factorise.

(2x -3 ~5=(2x -3 ~ (V5] =(2x-3 -5 Jax-3++5).

Quadratic trinomials For trinomials that have linear factors
involving rational numbers, the quickest method is by trial and
error.

x? +bx+c=(x+ p)x+q), by trial and error, find numbers p
and ¢ such that pg=c AND p+¢g=5b.

ax® +bx+c= (mx + p)(nx + q) , by trial and error, find numbers
m, n, p and g such that mn=a, pg=c AND mq+np=>.

Note: Check the value of b* —4c¢ in the first case and 5> — 4ac
in the second case before trying. If the value is negative, the
trinomial has no linear factors. If the value is zero, the two linear
factors are the same.

Example 1 Factorise 3x* —2x +1.

This trinomial cannot be factorised because
b* —dac= (— 2)2 - 4(3)(1) =-8, a negative value.

Example 2 Factorise f(x)=-2x% +4x+6.

The trinomial has a common factor of —2, hence
£(x)=-2(x* —2x-3).
For the resulting trinomial inside the brackets,

b* —4c=(-2) —4(-3)=16, a positive value; it can be
factorised.

flx)= —2<x2 -2x- 3): 2(x - 3)(x + 1) , by trial and error.
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Example 3 Factorise y =2rx> —28rx + 987 .

Y =2 = 28 + 987 = 2r(x> — 14x + 49)

For the resulting trinomial, »> —4c = (— 14)2 - 4(49) =0, hence
the two linear factors are the same.
Ly= 2r(x - 7)2 .

Example 4 Factorise x* —x* —12 completely over Q.
Rewrite the polynomial as <x2 )2 - (x2 )— 12
= (x2 —4)x* + 3)

=(x—2)(x+ 2)()62 +3)

Example 5 Factorise (x +3) - 2(x + 3) -35.

Trial and error

Difference of two squares

Do not expand. Replace x + 3 by y, then factorise by trial and
error.

(x+3) —2(x+3)-35=y> -2y -35=(y - 7Ny +5)
=(x+3—7)(x+3+5)=(x—4)(x+8)

Completing the square If you fail to find the linear factors of a
quadratic trinomial by trial and error, try completing the square.

Example 1 Factorise x* —6x +2 over R.

2 2
x?—6x+2=x"—6x+ o) (=8 +2
2 2

—x? —6x+9-9+2=(x" —6x+9)-

:(x—3)2 _(ﬁ)ZZ(X_3_ﬁXx—3+\/7)-

Example 2 Factorise 2x> —3x —6 over R.

2 2
2x2—3x—6=2[x2—§x—3}:2{x2—ix-i-(lxéj —(ij —3}
2 2 2 2 4
2 2 2
x —2x+ EAN S -3|=2 x—i 37
274 4 4) 16
2
3 (457 3) 57 3
xX=—=| —|—| [=2]|x—=|-——||| x—= |+
4 4 4) 4 4
3 N57). 3 45T
=lx-S - x->+—.
4 4 4" 4
Example 3 Factorise x* —2x> —7 overR.

(2)2—2(x2)—12+12—7
-l el
:(xz—l— 6Xx —1+\/g)
= - (1+f))( ~(1-+8)

{6 |-
(x x/1+\/_)(x+\/1+\/_)(x—\/1—
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Common factors.

Example 4 Factorise x* —x* +16 over R.

Add 9x* to complete the square.

xt —x? 4—16:()62)2 —x* +16+9x> —9x°

= ((x2)2 4822 +16)-9°

—(x? +4)f —(3x) =(x> —3x+4)x? +3x+4).

The two quadratic factors do not have linear factors,
wb® —dac<0.

Note: Examples 3 and 4 show two methods in completing the
square for polynomials of the form (x2 )2 -Bx*+C.

If B> —4C >0, follow the method shown in example 3, i.e. add
and subtract a constant to complete the square.

If B> —4C <0, follow the method shown in example 4, i.e. add

and subtract a x® term to complete the square.

Sum/difference of two cubes Both forms can be factorised to a
linear factor and a quadratic factor. The quadratic factor cannot
be factorised further.

a’ +b’ =(a+b)(a2 —ab+b2)
a’—b*=(a-b)a’ +ab+b2)
Example 1 Factorise 2x° —54 over R.

The two terms in the cubic function have a common factor of 2.
2x° —54=2x* —27)=2(x* - 3°)=2(x - 3)x> +3x +9).

Example 2 Factorise 625x° +40 over R.

625x° + 40 = 5(125x° + 8)=5((5x)* +2°)
= 55+ 2)((5x)7 = 2(5x)+ 27 )= 5(5x + 2)(25x> — 10x + 4).

3
Example 3 Factorise 1000x” + 52 over R.

1000° + 52 ~(10x) + (V5]
= (IOx + x/EI(IOx)Z - (le)(x/g)+ (\Efj

— (10x + 5 100x> ~105x + 5|
= 5(10x+5 2057 ~ 2453 +1).

Example 4 Factorise (2x —1)’ +1 over R.

Do not expand, use ‘the sum of two cubes’.
2x—1) +1=2x-1) +1°

=((2x—1)+1l(2x-1) —1(2x - 1)+1?)

= (2x)(4x” —4x+1-2x+1+1) =2x(4x> —6x+3).
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Example 5 Factorise x° — 64 over R.

Treat x° — 64 as difference of two squares.
¥ —6a=(f —(2°F =(x* =27 o +27)

:(x—2 X +2x+4) x+2 x2—2x+4).

If x® — 64 is treated as difference of two cubes, then

SR N R

Grouping The four terms in a cubic polynomial are grouped into
two and two. The two groups are then factorised. Correct
grouping gives a common factor in the two groups.

Example 1 Factorise 2x° —3x* —32x + 48 over R.

Group the first two terms and the last two.

2x° —3x? =320 + 48 = (20 — 3x? ) - (32x — 48)
=x?(2x—3)-16(2x - 3)=(2x - 3)x* - 16)

= (2x—3)x? —47)=(2x = 3)x — 4)x +4).

Note: It is also possible to proceed by grouping the first and the
third terms; and the second and the last terms.

Example 2 Factorise 8x° —2x° +x —1 over R.

8x’ —2x7 +x—1= (8x3 - 1)— (2x2 - x)z ((2)c)3 -1 )— (2x2 - x)
= (2x—1)(2x) + @2x) +17)- x(2x -1)

= (2x = 1)4x? +2x +1)- x(2x - 1)

= (2x—1)dx? + 2 +1-x)= (20— 1dx® +x+1).

The factor theorem

Consider a polynomial P(x) thathas x — as a linear factor.
Then P(x) = (x - a)Q(x), where Q(x) is a polynomial one
degree lower than P(x) , obtained by expanding and comparing
coefficients, or dividing P(x) by x—«a.

Replacing x by « in P(x)=(x - a)0(x),

P(a)= (a - a)Q(a) . Hence P(a) =0.

Conversely, for any polynomial P(x), if P(e)=0, then x -«
is a factor of P(x) . This statement is known as the factor

theorem, and can be used to find the linear factors of a
polynomial if other methods failed.
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The factor theorem is best used for polynomials with linear
factors of rational coefficients. The value(s) of « is found by
trial and error. The possible values of a for trying depend on
the first and last coefficients of
.factor.of .

P(x):aox" tax"" +...+a, x+a a:iw.

a.factor.of a,
If all these o values give P(a) # 0, it does not necessarily
mean that P(x) has no linear factors, because the coefficients of

the linear factor(s) may be irrational.

Example 1 Use the factor theorem to find a linear factor of

3x? —2x* —7x —2, then find the quadratic factor and hence all
the linear factors.

Let P(x)=3x’ —2x? —7x —2. The possible values of & for
E,il +2
3

PYLIVAaN

. L2 .
testing are a =+*—,1e. a =*—
1,3 3

P(1)=3(1) =201y =7(1)-2=0.
P(-1)=3(-1) =2(-1)* =7(~1)-2=0, -.x+1 is a factor.
Divide P(x) by x +1 to find the quadratic factor.

,x

3x® —5x-2
x+1)3x% —2x% = 7x -2
—(3)53 +3x2)
—5x* = 7x
—(—5)62 —Sx)
—2x-2
—(=2x-2)
0

Hence P(x)=(x + 1)(3x2 —5x— 2)2 (x+1)Bx+1)x-2).

Another possible outcome:

3 2
FERAIERN O, | ISP B
3 3 3 3 3

factor.
3x* -3x-6
x+%) 3x = 2x? = 7x-2
—(3)63 +x2)
—3x* - 7x
—(— 3x? —x)
—6x—2
—(-6x-2)
0

Hence P(x)= (x + %](3;8 ~3x—6)= 3(x + %j(xz ~x-2)

= 3(x + %)(x ~2)x +1). It is equivalent to the previous result.

Algebra 3



Example 2 Given x +1 is a factor of 3x* +x* —9x* —9x -2,
find the cubic factor Q(x) such that

3xt +x7 —9x? —9x—2=(x+1)Q(x).

Let O(x)=ax® +bx* + cx+d , then

3xt +x° —9x? —9x—2:(x+l ax® + bx* +cx+d).
Expand to obtain 3x* + x* —9x* —9x -2

=ax* +(a+b) +(b+ex? +(c+d)x+d.

Compare the coefficients on both sides,a =3, a+b=1,
b+c=-9,c+d=-9 and d =-2.Hence b=-2, c=-7.

~0(x)=3x" —2x? = 7x-2.
This example illustrates an alternative method in finding O(x)
to long division shown in the last example.

Example 3 Use the factor theorem to find the linear factors of
xt—xt +x? -3x+2.

Let P(x)=x* —x* +x? =3x+2. Test a=+1,42.
P(-1)=(-1)" =(=1)" +(=1)* =3(-1)+ 220

P(1)=()" = (1) +(1)* =3(1)+2=0, -.x—1 is a factor.
Hence P(x) = (x - I)Q(x) .

Use long division or comparing coefficients to find

Q(x)=x3 +x-2.

Hence P(x) = (x — 1 +x- 2) . Use the factor theorem on
O(x)=x* + x =2 to find its linear factor. Test @ =+1,42.
0(1)=(1) +(1)-2=0, .x—1 is a factor of O(x).

Hence P(x)=(x—1)x-1)T(x). T(x) is quadratic and found by
long division of P(x) by the expansion of (x — 1)(x - 1) , or
comparison of coefficients as discussed in example 2,
T(x)=x* +x+2.

P(x)z (x - l)(x —1)x® +x+ 2).

The remainder theorem When a polynomial P(x) is divided

by a linear binomial ax — £, the remainder can be found quickly
without actually carrying out the division.

Since Q(x) Quotient
oax—f ) P(x) Dividend (Polynomial)
Divisor R Remainder

+. P(x)=(exx - £)O(x) + R.
When x =§ , P(ﬁj = (o{ﬁj - ﬂjQ(x)+ R=R,

a a

i.e. the remainder R = P[ﬁj when P(x) is divided by ax — 5.
a

This is known as the remainder theorem.
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Example 1 Find the remainder when P(x) =2x* —x’ +5x—11
is divided by (i) x+5, (ii) 2x -3, (iii)) x—2a.

(i) R=P(-5)=2(-5)" = (~5) +5(-5)-11=1339

@ &=2)-o2) -(3) +q3)-u-2
2 2 2 2 4

(iii)
R=P(2a)=2(2a)" ~(2a)’ +5(2a)-11=32a* —8a’ +10a 11

Example 2 Given that x —2 is a factor of 3x° + px* + gx —2

and the remainder is —20 when the cubic polynomial is divided
by x + 2. Find the values of p and ¢.

Use the factor theorem and the remainder theorem to set up two
simultaneous equations for p and g.

Let P(x)=3x3 +pxt 4gx—2.

x —2 is a factor of P(x) , . P(2)= 0,

=302) + p(2) +4¢(2)-2=0, 2p+q=-11
The remainder is —20 when divided by x+2, .. P(— 2) =-20,

2320 + p(-2) +g(-2)-2=-20, 2p-g=3 ... )
Solve egs (1) and (2) for p and ¢.
(1) +@2), 4p=-8, .p=-2
(1) - (2)9 2q =-14 , g = =7
Exponential (index) laws

1 am ><an _am+n

2' ln — a—n ; m o_ }m : - _ am—n

a a
. (am )” — amn
4. (ab)" =a"b"

1

1 q
Good to know: a° =1, a? =%a , a” :({/;)q or Na? .

(ab)" —b™

Example 1 Simplify
(ab*) +p*

, and express with positive

indices.

ab 2n _b4n aan2n _b4n b2n a2n _bZn
(ab) _

(ab4)n e - a'b* L b - b4n(an +bn)
ol P - f) b(ar — ot fan 107
- (a” +b") - (a” +b”)
_a"-b"

- b2
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2x+1 x+1
e —4e™ +3e

x+1

Example 2 Simplify
—e

e —de™ 1 3¢ e(e“ —4e" + 3) eo((e‘” )2 —4<ex)+ 3)

e —e - e(ex —l) ( * —1)
= (e -3 _1):ex -3 for x#0.
e’ -1
. 2x+1 —4 x+1 )
Note: It is necessary to state that x =0, - ¢ —ae tde 1S

ex+1 —e

undefined for x =0 whilst e* —3 is defined for all x, .". they
cannot be equal at x=0.

s

2 2
Example 3 Simplify p3+—2pl
5p? +10p?
s 3 3 31
p2+2p2 _pz(p+2)_p22_£
3 11 T 5 57
Sp? +10p? sz(p+2)

3
Example 4 Simplify f(n)=(100" +2x10"* +100)> . Show
that £(2)=10007(0).

(100" + 210" + 100 = ((102)" +2x10x10" +102ﬁ

=((10")2 +2(10)(10")+102)% :((10" +10)2)% = (10" + 10}

- f(n)=(10" +10) .

£(0)=(10° +10) =11°;

7(2)=(10 +10) =(110) =(10x11) =10° x11° =1000,(0).

Example 5 Simplify ————==, express in positive indices.

6x3/2x° y? B 6(2x5y2 )%

(6xy) [(wy)jji (2x3xy

6x3/2x°y?
(6x6y)§

1 5 2

:2><3><23x3y3

45 2 21

3% 23 x3 3 2L L 5333

= lxy1:2><33x3y3:—1y .
25><3§x2y5 x?
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Logarithm laws

For p,q>0,
I. log, p+log, g=log,(pq)

2. log, p-log, qzloga(ﬁ} —log, qzloga(lJ
q q

3. log, p" =nlog, p

Law 4 shows the relationship between log, p and log, p .

Good to remember: log,1=0; log, a=1;
log, p is undefined for p<0;
log, p<0 for 0<p<1;log, p>0 for p>1.

For even n, log, p" is defined for all p e R whilst nlog, p is
defined only for p >0,

- log, p" =nlog, p for p>0,and
log, p" #nlog, p for p<0.

The following graphs of y =log, x> and y =2log, x illustrate
the point.

y=1n (x*2)
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Example 1 Evaluate SIOgZ(%)

SIOgZ(éj = Slog{%j =5log, 2 =—5x5log, 2=-25.

Example 2 Simplify 2log,, (3x2y)— 3log,, (nyz )

2log,, (3x2y)-3log, (2xy* )= log,, (3x?y ) —log,, (2xy* )

9x*y? 9x
:10g10(9x4y2)—10g10(8x3y6)=10g10 3)/6 =log,, rik
8x7y 8y

Example 3 Evaluate log, 10.

Your calculator has only log (i.e. log,,) and In (i.e. log,).

log, 10
=2.0959 , or log, 10 = —2¢
log,, 3 log,3

_log,, 10

log, 10 = =2.0959.

Example 4 Show that 3log, x —2log, x :glog2 X.

Change both logarithms on the left side of the identity to base 2.
3log, x 2log, x

3log, x —2log, x =

log, 4 log, 8
31 21
_ 0g, ;C _ 0g, 3X :ilogz x_glogz X
log, 2" log,2° 2 3
(3.2 lo x—ilo X
2 3 g3 6 g, X

Example 5 Show that . log,, e.
log, 10

Change both sides to a common base b.

LHS - 1 _ log, e '
log, 10 log, 10
log, e
1

RHS =—20% . LHS=RHS.
log, 10

Example 6 Given 107 =e?, (i) find ¢ in terms of p, (ii) find p
in terms of g.

(1) 107 =¢?, log,10” =log, e?, plog,10=¢qlog, e,
S.qg=plog,10.

q
log, 10

These two results show the way to change the base of an
exponential function.

(ii) Since g = plog,10, .. p= =qlog,e.

log, 10 I 1
107 =P 7, e =107°%°° In general, a* =b" .
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Example 6 Change 5" to base 10 and base e.

1 5 . ) log, 5 .
5x =10x 0go z1006990x; Sr =ex og, zel 6094x.

Equivalent relations

y=x2 <:>x:i\/_;

y= Sin(x)<:> x=Sin""! (y);

Examples are:

y=10" < x=log,, v;

y=e < x=log, y.

In each of the above cases, both left and right statements give
exactly the same relationship between x and y, i.e. they are
equivalent. Try to plot the graphs of a pair of equivalent
relations. They are the same plot. The left relation uses y as the
subject, and the right relation uses x. In the last two examples,
the left relations are expressed in index (exponential) form
whilst the right relations are in logarithm form.

Inverse relations

y=e" and x=log, y are equivalent relations, but

y=e" and x=¢” are inverse relations, and so are
y=Ilog, x and x=1log, y . (Read each relation carefully)

In inverse relations, the x and y-coordinates of all the points are
interchanged.

y=etx

or x=ln(y)

y=e" and x=¢’ y=log,x and x=log, y

Algebra



y=e" and x=¢e” are inverses of each other. Express

x = e” with y as the subject, y=log, x.

y=log, x and x=log, y are inverses of each other. Express

x=log, y withy as the subject, y=e".

Hence y=e" and y=Ilog, x are inverses of each other, as
discussed previously in Functions and Graphs.

Other examples of inverse pairs are:
T

y = Sin(x) for { x 2} and y=Sin"'(x);

y=x>for x>0 and y=+/x;
y=x> for x<0 and y=—/x.

1.5 y=arcsin (x)

y=sin (x)

y=sin (x)

-1.5
y=aresin (x)

1.5 y=2t2

y=sqrt (x)

0.5

-0.5

-1.5

1.5
y=x*2

0.5

-0.5

N y=-sart (x)
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Relations and functions

A relation is a set of ordered pairs (points). A function is a
relation such that no two points have the same x-coordinate.

Use the vertical line test to determine whether a relation is a
function (cuts through only one point) or not (cuts through more
than one point). If it is a function, then it is either a many-to-one
function or a one-to-one function. If it is not a function, then it
is either a many-to-many relation or a one-to-many relation.

13|
sany-to-any relstion sany-to-ons funcion

1

0. s

0 x o
o R T 1s 3 = s 1 s I T
“os o5
- 1

Ls
y
one-to-many relation

,,

Inverse functions

Every relation has an inverse that may or may not be a function.
If a relation is a one-to-many relation, then its inverse is a many-
to-one function. If a relation is a one-to-one function, then its
inverse is also a function (a one-to-one function). If a relation is
a many-to-many relation or many-to-one function, then its
inverse is not a function.

Use the horizontal line test to determine whether the inverse is
a function (cuts through only one point) or not (cuts through
more than one point).

Example 1 The following two graphs show the original relation
y=(x+1) that is a many-to-one function, and its inverse

x= (y + 1)2 that is not a function.
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Example 2 The relations y = Sin(x) for {— %,%} , y=x" for

x>0 and y=x> for x<0 are one-to-one functions, .". their
inverses are also one-to-one functions.

If a relation is a function, function notations can be used to
represent it, e.g. y=x* for x<0, f:R™ — R, f(x)=x". Since

its inverse y =—+/x is also a function, use ' to denote

inverse function, /™ :R* >R, £ (x)=—x .

Example 3 Restrict the domain of y =cosx to produce a one-

to-one function. Use function notations to represent it and its
inverse function.

There are an infinite number of possible restrictions of the
domain, e.g. [O, 7r] . Let the function with this restriction be

g:[O,;r]—) R,g(x):cosx.

The following graphs show that g and g~ are both one-to-one

functions. The graph of g™ is obtained by reflecting g in the
line y=x.

inverse of g

3

[N

]
]

S

—1.5m -7

~0's b 0 \n 150
-1 g () =cos (x)

g has a range of [— 1,1] , this becomes the domain of g'.

The inverse of y =cosx is x =cos y, the equivalent of
x=cosy is y=cos” x.

g FL]> R g (x)=cos " x.
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Example 4 Given a function with equation
y= %loge (3x - 1) + % , find the domain, range and equation of

its inverse with y as the subject.

The given function is defined for 3x-1>0,ie. x> % Lot
domain is (%, Ooj . Its range is R. Hence the domain and range
of its inverse are R and (é,oo] respectively.

. 1 5. 1 5
The inverse of y =Eloge(3x - l)+ 3 1S x= Eloge(3y - 1)+ 3

. 1
Transpose to make y the subject. x — % = 5 log, (3 y— 1),

2x-5= loge(3y - l), the equivalent is 3y —1=¢>*",
+1) or Lo 4 L
3 3

2x-5

3y=e™ +1, y:%(e

Example 5 Given f:R— R,f(x):3ezx ~1.Find f".

f is a one-to-one function, ... /'

exists. The equation for
graphing f is y =3e>* —1.f has (— l,oo) as its range, .. the
domain of f~'is (~1,%0). The graph of /" is the reflection of f

in the line y=x.

The equation of f~' is x =3e*’ —1. Transpose to make y the

subject.
2 X+l

x+1 1 x+1
2y=10ge(Tj, y=510ge( 3 j

Hence f:(- 1a°°)—>R»fl(x)=lloge(x+lj~

Algebra 8



Example 6 Given j:(~ 1,5]— R, j(x)= Ll +3, find the
x+

domain, range, asymptote(s) and equation of its inverse.

Consider the given function j: Domain (- 1,5]. Vertical
asymptote x =—1. Note that horizontal asymptote does not exist
because the function has an end point at x =5,

2

10 10 . 2
=——+3=— .Range | —,x |. Equation y=—+3.
TS5 3 g {3 ) a T

The inverse of j: Domain {?,oo) . Range (— 1,5]. Horizontal

asymptote y =—1. Equation x = Ll + 3. Make y the subject

v+
o 2 2 2
by transposition. x -3=——, y+1= , y= -1.
y+1 x—3 x—3
ty
=
)
(10/3,5)
3 (r)
4
(5,10/3)
x=-1
2
inver: £ §(x)
> A
4 -z 0 2 4 \.ﬂ_ 4
y=-1
-z

Example 7 Splitup y= - —2 into two one-to-one

-
(x+1)

functions % and k, and find 2™ and k.

y= —2 is a many-to-one function and it is symmetrical

1
(x + 1)2
about the vertical asymptote x =—1 . Restrict the function to
domain (— oo,—l) to form one-to-one function /. Restrict the

function to domain (~1,0) to form one-to-one function k.

Hence h:(~o0,~1)— R, h(x)= (le)z -2,
1
and k:(—l,oo)—)R,k(x):(Hl)2 -2.

The graphs of 4" and k' are obtained by reflecting the graphs
of hand k in the line y=x.
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Both % and & have the same horizontal asymptote y =-2 and
<. the same range (—2,). .. A”' and k' have the same

vertical asymptote x =—2 and domain (- 2,oo) . The inverse of

y:m—Z is x:m;l)z—Z . The equivalent relation to
= (—1)2 — 2 1is obtained by transposition to make y the
v+
subject.
1 2
:W 2, x+2=(y+ )2, (y+1) :x+2,
y+1== ! , y== ! -1
x+2 x+2
1
Hence A" :(-=2,00)—> R, A7 (x)=— -1,
R
1

Example 8 Find the domain and equation of the inverse of

2
y:l x—l +1, where x2—§.
9 3 3

The given function has an end point (— 2,2] , and a turning

point (% ,1] that is the lowest point of the function. Hence the

range is [l,oo), not [2,00). .. domain of the inverse is [l,oo).

2
Equation of the inverse is x = é( y— %j +1. Make y the

11y 1’
bject, x —1=—|y——=1| , Ax—-1)=| y—=
subject, x 9()/ 3) , (x ) (y 3} ,
y—%:iwwix—li, y—%=i3\/x—l, y:i3\/x—1+§.

Note: (1) The inverse is not a function. (2) The inverse has an

end point (2,— %) .

Algebra



Inverse functions undo each other

When a one-to-one function f'and its inverse function /' are
used to form composite function f ™' o f or fo f', then

f o f(x)=x, fof(x)=x,ie. they undo each other.

Example I Given f(x)=(x—-2)’, find f'(x). Show that they
undo each other.

Equation of fis y = (x - 2)3 , . equation of £ is x= (y - 2)3 ,

ie. y=Ax+2, /' (x)=x +2.

7o f0)= () =) +2=3(x—2) +2=x
For )=l @)= ()2 = Q) =x.

Example 2 Given g(x)=log, x, state g~'(x), find g o g(x)
and go g '(x), and simplify.

g '(x)=¢".
g71 o g(x): g’l (g(x)): eg(x) — elogex =x.
gog ' (x)= g(g'1 (x))z log,e" =x.

2
Example 3 Simplify y/¢2%% (--oec 1

1
\/6210&5 (x+1)—loge(x71)2 _ (eloge()chl)zflog(,(x—l)2 F

Solving exponential equations algebraically

Example 1 Solve the following equations.
(@ 4°=8 (b) 107 =0.01 (c) 4™ =10"".

(@ 4°=8, (22) =2°, 22 =2°, 2x=3, ng.

(b) 10> =0.01, 10> =#, 10> =102,

S 2x-3=-2, x:l.
2

() 4" =10"", 4 and 10 cannot be changed to the same base.
Take the log (to base 10 is simpler than to base e in this case) of

both sides of the equation. log,, 4" =log,, 10",
(x+1)log,, 4=x—1, (x+1)0.6021=x—1,
0.6021x +0.6021=x -1, x=4.0259.
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3x+2 — 6

Example 2 Solve Se

5¢*** =6, e =1.2, the equivalent is 3x+2=1log, 1.2,
3x=log,12-2, .. x :%(loge 1.2- 2) in exact form or
x=-0.6059 .

Example 3 Solve 8e*** =3e* .

x=2

8e* " =3e" 7, 627 :g, e :E, e™ :E, the equivalent
e 8 8 8

. 3 1 .

is 2x =log, 3/ x =Eloge — | in exact form or x = —0.4904 .

Alternative method: 8e**? =3¢, 8™ —3¢*™ =0,

eH(Sez“ —3)=0. Since e** #0, 8¢ ~3=0, ™ :% e

Example 4 Solve 3e* —4e* +1=0.

3er f —4le*)+1=0,
(e —1)e* —1)=0,

either 3e* —1=0 or e* —1=0,

[factorise by trial and error]

x

e 1 or e’ =1,1ie. leoge[l) or x=0.
3 3

Example 5 Solve 3e”* +4e* +1=0.

This equation has no real solutions for X, because all three terms
are greater than 0, .. sum > 0.

Example 6 Solve e** —4e* —4=0.

(ex )2 - 4(e" )— 4 =0 cannot be factorised over Q, set of rational

numbers, .". use the quadratic formula to obtain
o e
e =
2(1)
e =2+242 , hence x=log, (2 + 2@) in exact form or
x~1.5745.

" =2+242 . Since e* >0,

—kx+2

Example 7 Find £ such that the curve y =3e passes
through (-2.3).
When x=-2, y:3’ '.'3:3621”2’ eZk+2 -1,
2k+2=0, - k=-1.
Algebra 10



Example 8 Find a and b such that the curve y =ae™ +1 passes Example 2 Solve log, /243 =25.
through the points (~1,2) and (1,4).

log, +/243 =2.5, the equivalent is /243 = x>’ \/3_5:x2‘5,

Use the two points to set up two simultaneous equations: .

(-12)>ae” +1=2, ~ae’ =1........ 1) (5) =x2%, 325 =x?, - x=3
(L4) > ae’ +1=4, "ae’ =3 ............. 2)
b
Eq.(2)/eq.(1), &bzé e =3, 2b=log, 3 Example 3 Solve log, 5x=3, where x>0
ae”’ 1 e
.'.b:llog 3=log NE—. (3) log, 5x=3, log, 5+log, x=3,log 5+1=3, log, 5=2, the
2 e e

equivalent is x> =5 s .'.x:\/g.
Substitute eq.(3) in eq.(2), ae= =3 , a3 =3, d

fa=2 3.

V3 Example 4 Solve log,, x —log, (x + 1)= 1.

Example 9 Find b and ¢ such that the curve y =2e™ + ¢ passes

log,, x —log,, (x + 1): 1, log,O(Lj =1, the equivalent is
through the points (2,6) and (4,10). x+1

X 10", ox=10(x+1), x=10x+10, 9x=—10, x=—12 |
(2,6)>2e* +c=6, " 2" =6—c........... (1) x+1 9
(410)>2¢* +¢=10, . 2e* =10—c ........ (2)
Eq.(2)/eq.(1) 2e" _10-c | o2 — 10-¢ 3) Example 5 Solve loglo(x/§+x)+logm(x/§—x)=l.
q.(2)/eq. S e PR
Substitute eq.(3) in eq.(1), 2(16()_Cj:6—c, log,o(\/§+x)+logm(\/§—x)=l,

log,o (V35 + xJy35 - x)=1.
the equivalent is (x/g+ xxx/g—x)=101 ,
235-x2=10, x> =25, x=45.

22(00-¢)=(6-c), (6-c) —2(10-c)=0,

(6-c) —2(6-c)-8=0.

Factorise to obtain [(6 —c¢)- 4][(6 - c) + 2] =0.

Hence either 6—c—4=0,i.e. c=2,0r 6—c+2=0,1i.e.

¢ =8 . The second result is not possible because it leads to an Example 6 Solve 2log (x _ 2)_ log (x + 1): 0
impossibility 2¢% =—2. ..c=2......(4) ’ ’
Substitute eq.(4) in eq.(1), 2¢** =4, e =2, 2b=1log, 2, (x—2)

1 2log, (x—2)-log,(x +1)=0, log, =0,
b:Eloge2zloge\E. . X+l

(x—2) =1, (x—2)2 =x+1, x’ —dx+d=x+1,
x+1
5442512

x*=5x+3=0, x="—"—" =
2

Solving logarithmic equations algebraically _
i.e. x= > +;/B or > ;/B . Only the first solution is correct

Example 1 Solve the following equations.

1 because x >2 for 2log,(x —2) to be defined.
(i) log, x=5(ii) log,(x* —1)=3 (iii) logz(—j:I.S
X

Example 7 (— 2,1) is a point on the curve y =2log, (1 - ax).
(i) log, x=5, the equivalentis x=2", x=32.

Find a.
(i1) logz(x2 —1)=3 , the equivalent is x> —1=2°, x* =9,
x=143. 3 (—2,1)—>l=210g(,(l—a(—2)),%zloge(1+2a),
(iii) logz(%jzlj , the equivalent is §=21‘5 ,x=2"or22 ! |
1+2a=e?, a=— x/;—l .
or 0.3536 2
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Example 8 Find a and b such that y =log, vax+b +1 passes

through the points (O,l) and (1,%} .

(0,1)>1=log, Vb +1, ~log, b =0, b =1, ~.b=1.....(1)

1
(1,%}—)3:10ge\/a+b +1, log, va+ =%, Ja+b=e?,
Substitute eq.(1) ineq.(2), a=e—1.

Algebraic solution of equations involving circular functions

It is prudent to consider the domain when solving an equation
involving one or more circular functions.

In this section only equations involving only one of the circular
functions are considered.

In solving such equations algebraically, always transpose an
equation to make sin(kx), cos(kx) or tan(kx) the subject of the

equation.

Example 1 Solve 3sin(2x)=-2, where 0<x<6.

The domainis 0<x<6,o0r 0<2x<12.

3 sin(2x) =-2, sin(Zx) = —% .

. . . 2
Since sin(2x) has a negative value, — 3 then the ‘angle’ 2x

must be in the third or fourth quadrant.

A
q %

a=sin""' @] =0.7297 (Calculator)

2x=7+0.7297, 27 —0.7297 , 37 +0.7297, 47 —0.7297
2x=3.8713,5.5535, 10.1545, 11.8366
- x=1.9357,2.7767, 5.0772, 5.9183

Example 2 Find the exact solution(s) of 2\/5 cos(gj -3=0,

where 4w <0 <4r.

The domainis 47 <@ <4rx ,or —27z<§<27r.

23 cos(g] ~3=0, cos(gj V3

2
. o .. 3 0
Since cos(;j has a positive value, £, .. the ‘angle’ — must

be in the first or fourth quadrant.
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(V3 7
a=cos |— |=—
2] 6
9 gpsZ, BT g T
6’6 6
O_ Mz xoz llz o, Nz oz oz llz
2 6 66 6 37 3737 3°

Example 3 Find the exact coordinates of the intersections of
y=3sin(2x)+1 and y =x/§cos(2x)+1 ,where -7 <x<r.

Solve the two equations simultaneously to find the intersections.
y=3sin(2x)+1......... (1)  y=+3cos(2x)+1...... Q)

The domainis —r<x<m,or 27 <2x<2r.

Substitute eq.(1) in eq.(2), 3sin(2x)+1= NG cos(2x)+1,

=3 sin(2x): NE} cos(Zx), zz;(éz)) = g , tan(2x) % .

Since tan(Zx) has a positive value, 1 , the ‘angle’ 2x must be

5

in the first or third quadrant.

P
TP
L
\ // ]
\:\'-/ //
o 1 T
a=tan | — |[=—
(ﬁ] 6
2x:—27r+£,—7r+£,£,7r+£,
6 6 6
117z Sk w Ix 117z St nm In
.'.2x:——,——’—’—’.'.x——_’__’_’_'
6 6 6 06 12 1212 12

Substitute each of these (2x) values in eq.(1),

y=3sin -7 iogf L) 22
6 2 2
y=3sin oz +1=3 L +1:—l,
6 2 2
y=3sin| Z|+123 L4122,
6 2 2

y=3 sin(%} +1= 3(— %) +1= —% . The coordinates are

11z 5 Sz 1 T 5 Tr 1
__’_ 9 __’__ 9 _’_ and _’__ .
( 12 2) ( 12 2] (12 2} (12 2)
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Example 4 Solve sin’(x)=sin(x)cos(x) for x, where

0<x ﬁ% . Note: sin’(x) is the proper notation for (sin(x))’.

Caution: Do not divide both sides of the equation by sin(x),
because sin(x): 0 is a possibility. See below.
sin?(x) = sin(x)cos(x), sin?(x)—sin(x)cos(x)=0, common
factor, sin(x )sin(x) - cos(x))=0.
. either sin(x)=0,..x=0,

sin(x) - Cos(x) 0

or sin(x)— cos(x)=0, = for cos(x)=0,
cos(x) cos(x)
tan(x)— 1=0, tan(x): 1, x :% .

The two possible solutions for x are 0, % .

Example 5 Find # when x=10 sin(%) —12 is a minimum,

where 0 <t <48.

The domainis 0<¢<48, or 0<%<4ﬂ'.

Minimum of x is —22, it occurs when sin(%] =-1,

SR TE 18, 42,
2 22
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