© Copyright itute.com 2006
Free download \& print from www.itute.com Do not reproduce by other means
Functions, relations and graphs
In graph sketching, one must find x and y-intercepts, show asymptotic behaviour and, determine location of stationary points.

Graphs of functions defined by

$f(x)=a x^{m}+\frac{b}{x^{n}}$ for $m, n=1,2$
Use the method of addition of ordinates to sketch this type of functions.
Example 1 Sketch $y=\frac{1}{2} x+\frac{1}{x}$.

Clearly the function has no axis intercepts. It shows asymptotic behaviour:
As $x \rightarrow 0^{-}, y \rightarrow-\infty$. As $x \rightarrow 0^{+}, y \rightarrow+\infty$.
$\therefore x=0$ is an asymptote (vertical) of the function.
As $x \rightarrow-\infty, y \rightarrow \frac{1}{2} x$ (from below).
As $x \rightarrow+\infty, y \rightarrow \frac{1}{2} x$ (from above).
$\therefore y=\frac{1}{2} x$ is an asymptote (oblique) of the function.
Use calculus to find the coordinates of the stationary points:
$y=\frac{1}{2} x+\frac{1}{x}, \frac{d y}{d x}=\frac{1}{2}-\frac{1}{x^{2}}=0, \therefore x= \pm \sqrt{2}$.
At $x=-\sqrt{2}, y=\frac{1}{2}(-\sqrt{2})+\frac{1}{-\sqrt{2}}=-\sqrt{2}$. At $x=\sqrt{2}$,
$y=\frac{1}{2}(\sqrt{2})+\frac{1}{\sqrt{2}}=\sqrt{2}$.
The stationary points are $(-\sqrt{2},-\sqrt{2}),(\sqrt{2}, \sqrt{2})$.

Example 2 Sketch $y=x-\frac{8}{x^{2}}$.

x-intercept: Let $y=0, x-\frac{8}{x^{2}}=0, x^{3}=8, \therefore x=2$.
Asymptotic behaviour:
As $x \rightarrow 0^{-}, y \rightarrow-\infty$. As $x \rightarrow 0^{+}, y \rightarrow-\infty$.
$\therefore x=0$ is an asymptote of the function.
As $x \rightarrow-\infty, y \rightarrow x$ (from below).
As $x \rightarrow+\infty, y \rightarrow x$ (from below).
$\therefore y=x$ is an asymptote of the function.
Stationary points:

$$
\begin{aligned}
& y=x-\frac{8}{x^{2}}, \frac{d y}{d x}=1+\frac{16}{x^{3}}=0, \therefore x=\sqrt[3]{-2^{4}}=-2^{\frac{4}{3}} . \\
& \text { At } x=-2^{\frac{4}{3}}=-2.52, \\
& y=-2^{\frac{4}{3}}-\frac{8}{\left(-2^{\frac{4}{3}}\right)^{2}}=-2^{\frac{4}{3}}-2^{\frac{1}{3}}=-3.78 .
\end{aligned}
$$

The stationary point is $(-2.52,-3.78)$.
Example 3 Sketch $y=\frac{1}{2} x^{2}+\frac{2}{x}$.

x-intercept: Let $y=0, \frac{1}{2} x^{2}+\frac{2}{x}=0, x^{3}=-4, \therefore x=-1.59$.
Asymptotic behaviour:
As $x \rightarrow 0^{-}, y \rightarrow-\infty$. As $x \rightarrow 0^{+}, y \rightarrow+\infty$.
$\therefore x=0$ is an asymptote of the function.
As $x \rightarrow-\infty, y \rightarrow \frac{1}{2} x^{2}$ (from below).
As $x \rightarrow+\infty, y \rightarrow \frac{1}{2} x^{2}$ (from above).
$\therefore y=\frac{1}{2} x^{2}$ is an asymptote of the function.
Stationary points:
$y=\frac{1}{2} x^{2}+\frac{2}{x}, \frac{d y}{d x}=x-\frac{2}{x^{2}}=0, \therefore x=\sqrt[3]{2}=2^{\frac{1}{3}}$.
At $x=2^{\frac{1}{3}}=1.26, y=\frac{1}{2}\left(2^{\frac{1}{3}}\right)^{2}+\frac{2}{2^{\frac{1}{3}}}=2^{-\frac{1}{3}}+2^{\frac{2}{3}}=2.38$.
The stationary point is $(1.26,2.38)$.

Example 4 Sketch $y=-\frac{x^{2}}{4}+\frac{4}{x^{2}}$.

x-intercept: Let $y=0,-\frac{x^{2}}{4}+\frac{4}{x^{2}}=0, x^{4}=16, \therefore x= \pm 2$.
Asymptotic behaviour:
As $x \rightarrow 0^{-}, y \rightarrow+\infty$. As $x \rightarrow 0^{+}, y \rightarrow+\infty$.
$\therefore x=0$ is an asymptote of the function.
As $x \rightarrow-\infty, y \rightarrow-\frac{x^{2}}{4}$ (from above).
As $x \rightarrow+\infty, y \rightarrow-\frac{x^{2}}{4}$ (from above).
$\therefore y=-\frac{1}{4} x^{2}$ is an asymptote of the function.
The function has no stationary points.

Graphs of functions defined by $f(x)=\frac{1}{a x^{2}+b x+c}$
The sketching method of $f(x)=\frac{1}{a x^{2}+b x+c}$ depends on the linear factors of $a x^{2}+b x+c$.

Case $1 a x^{2}+b x+c$ can be factorised, i.e. the discriminant $b^{2}-4 a c>0$.
$\therefore f(x)=\frac{1}{a(x-p)(x-q)}$.
There are two vertical asymptotes, $x=p$ and $x=q$.

Example 1

Sketch the graph of the function $f(x)=\frac{1}{2 x^{2}-x-1}$.
Check: $b^{2}-4 a c>0$. Factorise the denominator:
$f(x)=\frac{1}{2 x^{2}-x-1}=\frac{1}{2\left(x+\frac{1}{2}\right)(x-1)}$.
Asymptotic behaviour:
As $x \rightarrow-\frac{1}{2}$ (from the left), $y \rightarrow+\infty$.
As $x \rightarrow-\frac{1}{2}$ (from the right), $y \rightarrow-\infty$.
$\therefore x=-\frac{1}{2}$ is an asymptote (vertical).
As $x \rightarrow 1$ (from the left), $y \rightarrow-\infty$.
As $x \rightarrow 1$ (from the right), $y \rightarrow+\infty$.
$\therefore x=1$ is an asymptote (vertical).
As $x \rightarrow-\infty, y \rightarrow 0$ (from above).
As $x \rightarrow+\infty, y \rightarrow 0$ (from above).
$\therefore y=0$ is an asymptote (horizontal).
y-intercept: Let $x=0, y=f(0)=-1$.
The function has no x-intercepts.
Stationary points: $y=\frac{1}{2 x^{2}-x-1}$,
$\frac{d y}{d x}=-\frac{4 x-1}{\left(2 x^{2}-x-1\right)^{2}}=0, \therefore x=\frac{1}{4} ; y=-\frac{8}{9}$.
Stationary point is $\left(\frac{1}{4},-\frac{8}{9}\right)$.

Alternatively, sketch the graph of $y=2 x^{2}-x-1$ first and then the reciprocal $y=\frac{1}{2 x^{2}-x-1}$.

Case $2 a x^{2}+b x+c$ has the discriminant $b^{2}-4 a c=0$. It has two linear factors and they are the same.
$\therefore f(x)=\frac{1}{a(x-d)^{2}}$, and it is the transformation (dilation and translation) of $f(x)=\frac{1}{x^{2}}$.

Example 1 Sketch $y=\frac{1}{2 x^{2}-4 x+2}$.
Check: $b^{2}-4 a c=0$. Factorise the denominator:
$y=\frac{1}{2(x-1)^{2}}$.
As $x \rightarrow 1$ (from the left), $y \rightarrow+\infty$.
As $x \rightarrow 1$ (from the right), $y \rightarrow+\infty$.
$\therefore x=1$ is an asymptote (vertical).
As $x \rightarrow-\infty, y \rightarrow 0$ (from above).
As $x \rightarrow+\infty, y \rightarrow 0$ (from above).
$\therefore y=0$ is an asymptote (horizontal).
y-intercept: Let $x=0, y=\frac{1}{2}$.
The function has no x-intercepts and stationary points.

Alternatively, sketch the graph of $y=2 x^{2}-4 x+2$ first and then the reciprocal $y=\frac{1}{2 x^{2}-4 x+2}$.

Case $3 a x^{2}+b x+c$ cannot be factorised, i.e. the discriminant $b^{2}-4 a c<0$.

In this case, the quadratic is never zero and therefore, $f(x)$ has no vertical asymptotes.

The best way to sketch $f(x)$ is to sketch the quadratic first and then its reciprocal.

Example 1 Sketch $f(x)=\frac{1}{x^{2}+2 x+3}$.
Check: $b^{2}-4 a c<0$. No linear factors.

Graphs of ellipses

The general equation of an ellipse in Cartesian form with the centre at the origin is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $\pm a$ are the x intercepts and $\pm b$ are the y-intercepts.

If the ellipse is translated so that its centre is at (h, k), the general equation becomes $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, where $[-a+h, a+h]$ is the domain and $[-b+k, b+k]$ the range of the relation.

Example 1 Sketch the graphs of
a) $x^{2}+\frac{y^{2}}{9}=1$
b) $(x+1)^{2}+\frac{(y-2)^{2}}{9}=1$.

Show the x, y intercepts, the domains and ranges.
a) x-intercepts: $x= \pm 1 ; y$-intercepts: $y= \pm 3$

Domain: $[-1,1]$; range: $[-3,3]$.
b) x-intercepts: Let $y=0,(x+1)^{2}+\frac{4}{9}=1,(x+1)^{2}=\frac{5}{9}$,
$x+1= \pm \frac{\sqrt{5}}{3}, x=-1 \pm \frac{\sqrt{5}}{3}$.
y-intercepts: Let $x=0,1+\frac{(y-2)^{2}}{9}=1, y=2$.
Centre: $(-1,2)$.

Graphs of hyperbolas

The general equation of a hyperbola with its centre at the origin is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ or $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$, where $\pm a$ are the x-intercepts for the first equation and $\pm b$ are the y-intercepts for the second. Both relations have two oblique asymptotes given by $y= \pm \frac{b}{a} x$.
The domain for the first is $R \backslash(-a, a)$ and the range is R. The domain for the second is R and the range is $R \backslash(-b, b)$.

If the hyperbola is translated so that its centre is at (h, k), the general equation becomes

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \text { or } \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=-1 .
$$

The two oblique asymptotes for both relations are $y-k= \pm \frac{b}{a}(x-h)$.
The domain for the first is $R \backslash(-a+h, a+h)$ and the range is R. The domain for the second is R and the range is $R \backslash(-b+k, b+k)$.

Domain: $[-2,0]$; range: $[-1,5]$.

Example 1 Sketch the graphs of a) $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ and
b) $\frac{(x+2)^{2}}{9}-\frac{y^{2}}{4}=-1$.

State the x and y intercepts, domains and ranges, and equations of the asymptotes.
a) x-intercepts: $x= \pm 3$; no y-intercepts.

Equations of asymptotes: $y= \pm \frac{2}{3} x$.

Domain: $R \backslash(-3,3)$; range: R.
b) y-intercepts: Let $x=0, \frac{4}{9}-\frac{y^{2}}{4}=-1, y= \pm \frac{2 \sqrt{13}}{3}$; no x intercepts.
Equations of asymptotes: $y= \pm \frac{2}{3}(x+2)$.

Domain: R; range: $R \backslash(-2,2)$.

Reciprocal trigonometric functions

The cosecant function of $x, \operatorname{cosec} x$, is defined as the reciprocal of the sine function, $\sin x$, i.e.

$$
\operatorname{cosec} x=\frac{1}{\sin x}
$$

The other reciprocal functions are defined as

$$
\sec x=\frac{1}{\cos x} \text { and } \cot x=\frac{1}{\tan x} .
$$

Graphs of $\operatorname{cosec} x, \sec x$ and $\cot x$

$$
y=\operatorname{cosec}(x)
$$

Asymptotes: $x=n \pi$, where $n=0, \pm 1, \pm 2, \ldots$
Domain: $R \backslash\{x: x=n \pi, n=0, \pm 1, \pm 2, \ldots\}$; range: $(-\infty,-1] \cup[1, \infty)$.
Period: 2π.
$y=\sec (x)$

Asymptotes: $x=n \pi$, where $n= \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2} \ldots$
Domain: $R \backslash\left\{x: x=n \pi, n= \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2} \ldots\right\}$; range: $(-\infty,-1] \cup[1, \infty)$.
Period: 2π.
$y=\cot (x)$

Asymptotes: $x=n \pi$, where $n=0, \pm 1, \pm 2, \ldots$
Domain: $R \backslash\{x: x=n \pi, n=0, \pm 1, \pm 2, \ldots\}$; range: R.
Period: π.

Transformations of $\operatorname{cosec} x, \sec x$ and $\cot x$

The transformations-dilation, reflection and translation are applicable to all functions. Always carry out translation last.

Example 1 Sketch $y=-\sec (2 x)+1$.
The graph of $y=\sec (x)$ is reflected in the x-axis, dilated horizontally by a factor of $\frac{1}{2}$, and translated upwards by a unit.

Asymptotes: $x=n \pi$, where $n= \pm \frac{1}{4}, \pm \frac{3}{4}, \pm \frac{5}{4} \ldots$
Domain: $R \backslash\left\{x: x=n \pi, n= \pm \frac{1}{4}, \pm \frac{3}{4}, \pm \frac{5}{4} \ldots\right\}$;
range: $(-\infty, 0] \cup[2, \infty)$.
Period: π.

Example 2 Sketch $y=\cot \left(\frac{\pi}{2}-x\right)$ and $-\pi \leq x \leq \pi$.
Rewrite: $y=\cot \left(\frac{\pi}{2}-x\right)=\cot \left[-\left(x-\frac{\pi}{2}\right)\right]$.
The graph of $y=\cot (x)$ is reflected in the y-axis, and then translated to the right by $\frac{\pi}{2}$.
The graph is restricted to $-\pi \leq x \leq \pi$.

Asymptotes: $x=-\frac{\pi}{2}$ and $x=\frac{\pi}{2}$.
Domain: $[-\pi, \pi] \backslash\left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}$; range: R.
Period: π.

Identities

An identity is an equality which is always true as long as it is defined.

$$
\begin{aligned}
& \tan x=\frac{\sin x}{\cos x} \\
& \cot x=\frac{\cos x}{\sin x} \\
& \sin ^{2} x+\cos ^{2} x=1 \\
& \cos ^{2} x=1-\sin ^{2} x \\
& \sin ^{2} x=1-\cos ^{2} x \\
& \sec ^{2} x=1+\tan ^{2} x \\
& \operatorname{cosec} x=1+\cot ^{2} x
\end{aligned}
$$

Example 1 Use $\sin ^{2} x+\cos ^{2} x=1$ to prove $\sec ^{2} x=1+\tan ^{2} x$ and $\operatorname{cosec} 2=1+\cot ^{2} x$.
$1=\cos ^{2} x+\sin ^{2} x, \frac{1}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}$,
$\frac{1}{\cos ^{2} x}=\frac{\cos ^{2} x}{\cos ^{2} x}+\frac{\sin ^{2} x}{\cos ^{2} x}, \therefore \sec ^{2} x=1+\tan ^{2} x$.
$1=\sin ^{2} x+\cos ^{2} x, \frac{1}{\sin ^{2} x}=\frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x}$,
$\frac{1}{\sin ^{2} x}=\frac{\sin ^{2} x}{\sin ^{2} x}+\frac{\cos ^{2} x}{\sin ^{2} x}, \therefore \operatorname{cosec} 2 x=1+\cot ^{2} x$.

Example 2 Prove $\frac{1}{1-\sin x}=\sec x(\sec x+\tan x)$.

$$
\begin{aligned}
& R H S=\frac{1}{\cos x}\left(\frac{1}{\cos x}+\frac{\sin x}{\cos x}\right)=\frac{1}{\cos x}\left(\frac{1+\sin x}{\cos x}\right) \\
& =\frac{1+\sin x}{\cos ^{2} x}=\frac{1+\sin x}{1-\sin ^{2} x}=\frac{1+\sin x}{(1-\sin x)(1+\sin x)} \\
& =\frac{1}{1-\sin x}=L H S .
\end{aligned}
$$

Compound angle formulas

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
\end{aligned}
$$

Double angle formulas

$\sin 2 A=2 \sin A \cos A$
$\cos 2 A=\cos ^{2} A-\sin ^{2} A$
$\cos 2 A=2 \cos ^{2} A-1$
$\cos 2 A=1-2 \sin ^{2} A$
$\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$

Example 1 Prove $\tan x+\tan y=\frac{\sin (x+y)}{\cos x \cos y}$.

$$
\begin{aligned}
& L H S=\frac{\sin x}{\cos x}+\frac{\sin y}{\cos y}=\frac{\sin x \cos y+\cos x \sin y}{\cos x \cos y} \\
& =\frac{\sin (x+y)}{\cos x \cos y}=R H S
\end{aligned}
$$

Example 2 Use the compound angle formulas for $\sin (A \pm B)$ and $\cos (A \pm B)$ to prove that for $\tan (A \pm B)$.

$$
\begin{aligned}
& \tan (A \pm B)=\frac{\sin (A \pm B)}{\cos (A \pm B)}=\frac{\sin A \cos B \pm \cos A \sin B}{\cos A \cos B \mp \sin A \sin B} \\
& =\frac{\frac{\sin A \cos B \pm \cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B \mp \sin A \sin B}{\cos A \cos B}}=\frac{\frac{\sin A \cos B}{\cos A \cos B} \pm \frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B} \mp \frac{\sin A \sin B}{\cos A \cos B}} \\
& =\frac{\frac{\sin A}{\cos A} \pm \frac{\sin B}{\cos B}}{1 \mp \frac{\sin A}{\cos A} \frac{\sin B}{\cos B}}=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} .
\end{aligned}
$$

Example 3

Prove $(\sin x+\sin y)(\sin x-\sin y)=\sin (x+y) \sin (x-y)$.

$$
\begin{aligned}
& \text { RHS }=(\sin x \cos y+\cos x \sin y)(\sin x \cos y-\cos x \sin y) \\
& =\sin ^{2} x \cos ^{2} y-\cos ^{2} x \sin ^{2} y \\
& =\sin ^{2} x\left(1-\sin ^{2} y\right)-\left(1-\sin ^{2} x\right) \sin ^{2} y \\
& =\sin ^{2} x-\sin ^{2} y \\
& =(\sin x+\sin y)(\sin x-\sin y)=\text { LHS }
\end{aligned}
$$

Example 4 If $\sin x=\frac{1}{3}$ and $\sec y=\frac{5}{4}$, where
$x, y \in\left[0, \frac{\pi}{2}\right]$, evaluate $\sin (x-y)$.
Note: x and y are in the first quadrant, $\therefore \cos x$ and $\sin y$ have positive values.
$\sin x=\frac{1}{3}, \therefore \cos x=\sqrt{1-\sin ^{2} x}=\sqrt{1-\left(\frac{1}{3}\right)^{2}}=\sqrt{\frac{8}{9}}=\frac{2 \sqrt{2}}{3}$.
$\sec y=\frac{5}{4}, \therefore \cos y=\frac{4}{5}$, and
$\sin y=\sqrt{1-\cos ^{2} y}=\sqrt{1-\left(\frac{4}{5}\right)^{2}}=\frac{3}{5}$.
$\therefore \sin (x-y)=\sin x \cos y-\cos x \sin y=\frac{1}{3} \times \frac{4}{5}-\frac{2 \sqrt{2}}{3} \times \frac{3}{5}$
$=\frac{2(2-3 \sqrt{2})}{15}$.

Example 5 Find the exact value of $\cos \frac{\pi}{12}$.
$\cos \frac{\pi}{12}=\cos \left(\frac{\pi}{3}-\frac{\pi}{4}\right)=\cos \frac{\pi}{3} \cos \frac{\pi}{4}+\sin \frac{\pi}{3} \sin \frac{\pi}{4}$
$=\frac{1}{2} \times \frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}=\frac{1+\sqrt{3}}{2 \sqrt{2}}$
$=\frac{\sqrt{2}(1+\sqrt{3})}{4}$.

Example 6 Find the exact values of $\sin \frac{\pi}{8}$ and $\tan \frac{\pi}{8}$.

For $\sin \frac{\pi}{8}$, consider $\cos \frac{\pi}{4}=\cos 2\left(\frac{\pi}{8}\right)$,
$\therefore \frac{1}{\sqrt{2}}=1-2 \sin ^{2}\left(\frac{\pi}{8}\right), \therefore \sin ^{2}\left(\frac{\pi}{8}\right)=\frac{2-\sqrt{2}}{4}$.
Hence $\sin \frac{\pi}{8}=\frac{\sqrt{2-\sqrt{2}}}{2}$, since $0<\frac{\pi}{8}<\frac{\pi}{2}$.
For $\tan \frac{\pi}{8}$, consider $\tan \frac{\pi}{4}=\tan 2\left(\frac{\pi}{8}\right)$,
$\therefore 1=\frac{2 \tan \frac{\pi}{8}}{1-\tan ^{2}\left(\frac{\pi}{8}\right)}, \therefore \tan ^{2}\left(\frac{\pi}{8}\right)+2 \tan \frac{\pi}{8}-1=0$.
Use the quadratic formula to find

$$
\tan \frac{\pi}{8}=\frac{-2+\sqrt{4+4}}{2}=\sqrt{2}-1
$$

Example 7 Prove $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.

$$
\begin{aligned}
& \text { LHS }=\cos 3 \theta=\cos (2 \theta+\theta)=\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta \\
& =\left(2 \cos ^{2} \theta-1\right) \cos \theta-(2 \sin \theta \cos \theta) \sin \theta \\
& =\left(2 \cos ^{2} \theta-1\right) \cos \theta-2 \sin ^{2} \theta \cos \theta \\
& =\left(2 \cos ^{2} \theta-1\right) \cos \theta-2\left(1-\cos ^{2} \theta\right) \cos \theta \\
& =2 \cos ^{3} \theta-\cos \theta-2 \cos \theta+2 \cos ^{3} \theta \\
& =4 \cos ^{3} \theta-3 \cos \theta=R H S
\end{aligned}
$$

Example 8 Solve $2+\cos 2 \beta=3 \cos \beta$ where $\beta \in[0,2 \pi]$.
$2+\cos 2 \beta=3 \cos \beta, 2+2 \cos ^{2} \beta-1=3 \cos \beta$,
$2 \cos ^{2} \beta-3 \cos \beta+1=0$,
$(2 \cos \beta-1)(\cos \beta-1)=0$,
$\therefore \cos \beta=\frac{1}{2}, \beta=\frac{\pi}{3}, \frac{5 \pi}{3}$,
or $\cos \beta=1, \beta=0,2 \pi$.
The solution set is $\left\{0, \frac{\pi}{3}, \frac{5 \pi}{3}, 2 \pi\right\}$.

Restricted trigonometric functions

$\operatorname{Sin} x$

The function $f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow R, f(x)=\sin x$ is represented simply as $\operatorname{Sin} x$. Its range is $[-1,1]$. It is a one-to-one function and therefore its inverse is also a function. The inverse
function is denoted as $\operatorname{Sin}^{-1} x$. The domain of $\operatorname{Sin}^{-1} x$ is $[-1,1]$ and the range is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Cos x

The function $f:[0, \pi] \rightarrow R, f(x)=\cos x$ is represented by $\operatorname{Cos} x$. Its range is $[-1,1]$.
It is also a one-to-one function and therefore its inverse is a function. The inverse function is denoted as $\operatorname{Cos}^{-1} x$ with domain $[-1,1]$ and range $[0, \pi]$.

Tan x

The function $f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow R, f(x)=\tan x$ is represented by $\operatorname{Tan} x$. Its range is R. It is a one-to-one function and its inverse is also a function. The inverse function is denoted as $\operatorname{Tan}^{-1} x$ with domain R and range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Transformations of inverse trigonometric functions

Example 1 Sketch $y=-2 \operatorname{Sin}^{-1}(x+1)$. State the domain and range.
Start with the graph of $y=\operatorname{Sin}^{-1} x$. Reflect in the x-axis, dilate vertically by a factor of 2 , then translate to the left by a unit.

Domain: $[-2,0]$; range: $[-\pi, \pi]$.
Example 2 Sketch $y=\frac{1}{2} \operatorname{Cos}^{-1}(2 x)-\frac{\pi}{4}$. State the domain and range.
Start with the graph of $y=\operatorname{Cos}^{-1} x$, dilate vertically by a factor of $\frac{1}{2}$ and horizontally by the same factor, then translate downwards by $\frac{\pi}{4}$.

Domain: $\left[-\frac{1}{2}, \frac{1}{2}\right]$; range: $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$.

Example 3 Sketch $y=-\operatorname{Tan}^{-1}(2 x+1)+\pi$. State the domain and range.
Rewrite $y=-\operatorname{Tan}^{-1}(2 x+1)+\pi$ as $y=-\operatorname{Tan}^{-1} 2\left(x+\frac{1}{2}\right)+\pi$.
Start with the graph of $y=\operatorname{Tan}^{-1} x$, reflect in the x-axis, dilate horizontally by a factor of $\frac{1}{2}$, then translate to the left by $\frac{1}{2}$ and upwards by π.

Domain: R; range: $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$.

Example 4 Sketch $y=\operatorname{Sin}^{-1}\left(1-\frac{x}{2}\right)-\frac{\pi}{2}$. State the domain and range.
Rewrite $y=\operatorname{Sin}^{-1}\left(1-\frac{x}{2}\right)-\frac{\pi}{2}$ as $y=\operatorname{Sin}^{-1}\left(-\frac{1}{2}(x-2)\right)-\frac{\pi}{2}$.
Start with the graph of $y=\operatorname{Sin}^{-1} x$, reflect in the y-axis, dilate horizontally by a factor of 2 , then translate to the right by 2 units, and downwards by $\frac{\pi}{2}$.

Domain: $[0,4]$; range: $[-\pi, 0]$.

