2008 VCAA Physics Exam 1 Solutions

© Copyright 2008 itute.com Do not photocopy Free download and print from www.itute.com

Area of study 1 - Motion in one and two dimensions

Q1 Force of tow rope on ship $=9.0 \times 10^{4} \mathrm{~N}$
Water resistance force on ship $=2.0 \times 10^{4} \mathrm{~N}$ (from graph)
Resultant force on ship $=9.0 \times 10^{4}-2.0 \times 10^{4}=7.0 \times 10^{4} \mathrm{~N}$
Accel $=\frac{F}{m}=\frac{7.0 \times 10^{4}}{100 \times 10^{4}}=0.070 \mathrm{~ms}^{-1}$.
Q2 At this constant speed, water resistance force $=$ tow rope force $=9.0 \times 10^{4} \mathrm{~N}$. This corresponds to $4.0 \mathrm{~ms}^{-1}$ (from graph).

Q3 Ignoring friction between the car and the surface,
$T=\frac{m v^{2}}{r}=\frac{2.4 \times 2.0^{2}}{1.6}=6.0 \mathrm{~N}$
Q4 Since the car is in uniform circular motion, the resultant force on the car is towards the centre of the circular path. Hence direction P.

Q5 Consider the vertical component:
$u=^{+} 30.0 \sin 36.9^{\circ}=^{+} 18.0126, a={ }^{-} 10, v=0$, find s.
Use $v^{2}=u^{2}+2 a s, s={ }^{+}$16.2. Max. height $=16.2 \mathrm{~m}$.
Q6 The ball falls under gravity only while it is in flight. Hence the resultant force is R .

Q7 This question requires you to consider both components. Horizontal component:
$u=^{+} 30.0 \cos 36.9^{\circ}={ }^{+} 23.9905, s=^{+} 72.0$, find t.
Use $s=u t, t=3.0012 \mathrm{~s}$.
Vertical component:
$u=^{+} 30.0 \sin 36.9^{\circ}=^{+} 18.0126, a={ }^{-} 10, t=3.0012$, find s.
Use $s=u t+\frac{1}{2} a t^{2}={ }^{+} 9.02 \mathrm{~m}$
Height $=9.02 \mathrm{~m}$.
Q8 Apply conservation of momentum:
$\left(80 \times 10^{3}\right) \nu=\left(20 \times 10^{3}\right)(+8.0)+\left(60 \times 10^{3}\right)(0)$
$v={ }^{+} 2.0$. Hence the speed $=2.0 \mathrm{~ms}^{-1}$.
Q9 Impulse $=$ change in momentum $=m(v-u)$
$I=\left(20 \times 10^{3}\right)\left({ }^{+} 2-^{+} 8\right)={ }^{-} 1.2 \times 10^{5} \mathrm{kgms}^{-1}$,
i.e. $1.2 \times 10^{5} \mathrm{kgms}^{-1}$ west.

Q10 Total kinetic energy before collision
$=\frac{1}{2}\left(20 \times 10^{3}\right) 8.0^{2}=6.4 \times 10^{5} \mathrm{~J}$

Total kinetic energy after collision
$=\frac{1}{2}\left(80 \times 10^{3}\right) 2.0^{2}=1.6 \times 10^{5} \mathrm{~J}$
Not the same amount, inelastic collision.
Q11 According to conservation of momentum,
$\Delta p_{L}+\Delta p_{T}=0, \Delta p_{L}=^{-} \Delta p_{T},\left|\Delta p_{L}\right|=\left|\Delta p_{T}\right|,\left|I_{L}\right|=\left|I_{T}\right|$,
$F_{L} \Delta t=F_{T} \Delta t, \therefore F_{L}=F_{T}$, i.e. Newton's third law.

Q12 Stored energy $=\frac{1}{2} k x^{2}=\frac{1}{2}(10) 0.20^{2}=0.2 \mathrm{~J}$

Q13

Total energy
$E_{T}=$ gravitational p.e. + elastic p.e. + kinetic e. is constant.
$E_{T}=m g x+\frac{1}{2} k(0.25-x)^{2}+E_{k}$
$\therefore E_{k}=E_{T}-m g x-\frac{1}{2} k(0.25-x)^{2}$ where E_{T} is a constant.
This is a quadratic function of x with a negative coefficient for x^{2}, i.e. an inverted parabola. At the top and bottom of the oscillations, the system is momentarily at rest, i.e. zero kinetic energy. Hence graph D.

Q14 Since the gravitational potential energy $=m g x$, linear function of x. Hence graph A.

Q15 The speed of the comet decreases from a maximum value at X to a minimum value at Y . Its total energy remains constant around its orbit.

Q16 Gravitational force $F=\frac{G M m}{r^{2}}$
$=\frac{\left(6.67 * 10^{-11}\right)\left(6.42 \times 10^{23}\right)(930)}{\left(3.83 \times 10^{6}\right)^{2}}=2.71 \times 10^{3} \mathrm{~N}$
Q17 Mars Global Surveyor is in free fall, $\therefore a=g$,
i.e. $\frac{4 \pi^{2} r}{T^{2}}=\frac{G M}{r^{2}}$,
$\therefore T=2 \pi \sqrt{\frac{r^{3}}{G M}}=2 \pi \sqrt{\frac{\left(3.83 \times 10^{6}\right)^{3}}{\left(6.67 \times 10^{-11}\right)\left(6.42 \times 10^{23}\right)}}$
$=7.20 \times 10^{3} \mathrm{~s}$.

Area of study 2 - Electronics and photonics

Q1 $V_{L E D}=2.5 \mathrm{~V}$ (from graph)
$\therefore V_{R}=8.0-2.5=5.5 \mathrm{~V}$
$I_{L E D}=I_{R}=\frac{V_{R}}{R}=\frac{5.5}{300}=0.0183 \mathrm{~A}=18.3 \mathrm{~mA}$

Q2 $V_{P}=\frac{1}{1+2} \times 6=2 \mathrm{~V}$
Q3 Voltage drop across $\mathrm{R}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}=3 \mathrm{~mA} \times 1 \mathrm{k} \Omega=3 \mathrm{~V}$. $\therefore \mathrm{V}_{\mathrm{Q}}=6-3=3 \mathrm{~V}$.

Q4 Power $=\left(\mathrm{I}_{\mathrm{C}}\right)^{2} \mathrm{R}_{\mathrm{C}}=\left(3 \times 10^{-3}\right)^{2}\left(1 \times 10^{3}\right)=9 \times 10^{-3} \mathrm{~W}$
Q5 Voltage amplification $=\frac{\Delta V_{O U T}}{\Delta V_{I N}}=\frac{-3}{60 \times 10^{-3}}=-50$.

Q6 Negative slope: the amplifier gives inverted signals.
Horizontal section for $V_{I N}>^{+} 60 \mathrm{mV}$: the amplifier is saturated, i.e. maximum current flows through the transistor.

Horizontal section for $V_{I N}<^{-} 60 \mathrm{mV}$: the amplifier is at cut-off, i.e. minimum (zero) current flows through the transistor.

Q7

Q8 Without the coupling capacitor C , the voltage at Y will be forced to have similar voltage as that at X and may cause incorrect biasing of the second transistor amplifier. With C, the dc component of the output at X is removed and only the ac component is allowed to pass through to Y , which is at the correct biasing voltage.

Q9 Thermistor resistance at $20^{\circ} \mathrm{C}=1000 \Omega$ (from graph).
Q10 Thermistor resistance at $5^{\circ} \mathrm{C}=4000 \Omega$ (from graph).

Voltage divider ratio: $\frac{R}{4000}=\frac{4}{8}, R=2000 \Omega$.
Q11 Lower temperature, higher thermistor resistance and \therefore higher variable resistor resistance is required to maintain the on/off voltage of 4 V . R should be increased.

Detailed study 1 - Einstein's special relativity

1	2	3	4	5	6	7	8	9	10	11	12	13
B	C	A	C	C	B	B	B	C	B	C	D	B

Q1 To the observer in the rocket, the window on the space station moves to the left (refer to given diagram) at relativistic speed. \therefore the width of the window is shorter since it moves along the direction of motion. The height of the window remains the same. B

Q2 $\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$. Relativistic effects are not observable when
$\frac{v}{c}$ is very small, i.e. $\gamma \approx 1 . \quad \mathrm{C}$
Q3 A short time later Nancy will be closer to Alan, and \therefore the light from Alan will reach Nancy first. A

Q4 $L=\frac{L_{O}}{\gamma}=L_{O} \sqrt{1-\frac{v^{2}}{c^{2}}}, \therefore 10=20 \sqrt{1-\frac{v^{2}}{c^{2}}}$,
$\frac{v^{2}}{c^{2}}=0.75, v=0.87 c . \quad \mathrm{C}$

Q5 C
Q6 B
Q7 Speed of sound relative to Mary $=340+40=380$.
Speed of sound relative to Trung $=340-40=300$. B
Q8 Einstein's second postulate. B
Q9 Proper length is the length of an object measured by an observer at rest relative to the object. C

Q10 $E_{k}=m_{o} c^{2}(\gamma-1)$. At $v=0.99 c, \gamma-1=6.09$.
When the speed increases slightly (a very small percentage) to say $v=0.995 c, \gamma-1=9.01$, so the increase in $E_{k} \approx 50 \%$. B
Q11 $\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=4, \sqrt{1-\frac{v^{2}}{c^{2}}}=\frac{1}{4}, 1-\frac{v^{2}}{c^{2}}=\frac{1}{16}, \frac{v^{2}}{c^{2}}=\frac{15}{16}$,
$\frac{v}{c}=0.97, v=0.97 c . \quad \mathrm{C}$
Q12 Electron's frame of reference is a moving frame relative to the linear section, \therefore the linear section appears shorter.
$L=L_{o} \sqrt{1-\frac{v^{2}}{c^{2}}}=600 \times \frac{1}{4}=150 \mathrm{~m} . \quad D$
Q13 Mass decreased $=(1.673+1.675-3.344) \times 10^{-27}$
$=4 \times 10^{-30} \mathrm{~kg}$.
Energy released $=m c^{2}=\left(4 \times 10^{-30}\right)\left(3.0 \times 10^{8}\right)^{2}=3.6 \times 10^{-13} \mathrm{~J}$.
B

Detailed study 2 - Investigating materials and their use in structures

1	2	3	4	5	6	7	8	9	10	11	12	13
D	B	A	A	C	C	C	A	A	A	C	B	D

Q1 $E=\frac{\sigma}{\varepsilon}=\frac{8.0 \times 10^{7}}{15 \times 10^{-4}}=5.3 \times 10^{10} \mathrm{Nm}^{-2} . \quad \mathrm{D}$

Q2 B

Q3 Compressive strength $=8.0 \times 10^{7} \mathrm{Nm}^{-2}$.
Cross-sectional area $=1.50 \mathrm{~m}^{2}$.
Max. force $=\left(8.0 \times 10^{7}\right)(1.50)=1.2 \times 10^{8} \mathrm{~N} . \quad$ A

Q4 Area under (above) σ vs ε graph
$=\frac{1}{2}\left(8.0 \times 10^{7}\right)\left(15.0 \times 10^{-4}\right)=6.0 \times 10^{4} \mathrm{Jm}^{-3} . \quad \mathrm{A}$
Q5 Volume of column $=20.0 \times 1.50=30.0 \mathrm{~m}^{3} . C$
Q6 $\Delta L=\varepsilon L=\left(5.00 \times 10^{-4}\right)(20.00)=0.010 \mathrm{~m}$
Compressed height $=20.00-0.010=19.99 \mathrm{~m} . \quad C$
Q7 Refer to the given σ vs ε graph. The slope in tension is greater than the slope in compression. C

Q8 A
Q9 A
Q10 Refer to the given σ vs ε graph. For steel P , greater slope means greater stiffness; less area under means lower toughness. A

Q11 $\tau_{Y}={ }^{+} 40000 \times 2+^{-} F_{X} \times 8=0$ for rotational equilibrium.
$\therefore F_{X}=10000 \mathrm{~N} \quad \mathrm{C}$

Q12 $\tau_{Y}={ }^{+} 40000 \times 2+^{-} F_{Z} \times 4=0$ for rotational equilibrium.
$\therefore F_{Z}=20000 \mathrm{~N}, \therefore$ load $=\frac{20000}{g}=2000 \mathrm{~kg} . \quad B$

Q13 The underside of the section XY and the topside of the section YZ are in tension, \therefore reinforcing steel rods are required. D

Detailed study 3 - Further electronics

1	2	3	4	5	6	7	8	9	10	11	12	13
C	C	D	C	B	D	A	D	D	C	B	C	C

Q1 $\tau=R C=\left(5 \times 10^{3}\right)\left(100 \times 10^{-6}\right)=0.50 \mathrm{~s} . \quad \mathrm{C}$

Q2 After $\tau=6 \mathrm{~s}$, voltage increases to 63% of 10 V , i.e. 6.3 V approx. C

Q3 After $\tau=6 \mathrm{~s}$, voltage decreases by 63% of 10 V , down to
3.7 V approx. D

Q4 C
Q5 The plates are used as heat sinks. B
Q6 A Zener diode is connected in reversed bias when used as a voltage regulator. D

Q7 $\frac{N_{P}}{N_{S}}=\frac{V_{P}}{V_{S}}=\frac{240}{10}=\frac{240 \times 20}{10 \times 20}=\frac{4800}{200}$.
A

Q8 $4 \mathrm{~V} / \mathrm{cm}$ on the vertical scale, and $5.0 \mathrm{~ms} / \mathrm{cm}$ on the horizontal scale.
$f=50, T=\frac{1}{f}=\frac{1}{50} \mathrm{~s}=20 \mathrm{~ms} \equiv 4 \mathrm{~cm}$
Peak voltage $V_{p}=\sqrt{2} V_{r m s}=\sqrt{2} \times 10 \approx 14 \mathrm{~V} \cong 3.5 \mathrm{~cm} . \quad \mathrm{D}$

Q9 D
Q10 $\tau=R C=\left(400 \times 10^{-6}\right)(10)=4 \times 10^{-3} \mathrm{~s}=4 \mathrm{~ms}$.
The best answer is C . The ripples are much larger than that shown in the graph. The lowest voltage is approx. 37% of 14 V , i.e. 5 V .

Q11 The voltage should be around 6 V . More likely it is graph B than graph A. Refer to Q 10 and Q 13.

Q12 $P=\frac{V^{2}}{R}=\frac{6^{2}}{10}=3.6 \mathrm{~W} . \quad \mathrm{C}$

Q13 Increasing the capacitance of the capacitor to a much higher value will ensure the supply voltage to the voltage regulator is well above 6 V for it to operate correctly with reduce ripple voltage at the output. C

Please inform physicsline@itute.com re conceptual,

 mathematical and/or typing errors