

2009 NSW BOS General Mathematics Solutions Free download and print from www.itute.com ©Copyright 2009 itute.com

Section	Ι						
1	2	3	4	5	6	7	8
С	С	С	Α	D	Α	Α	D
9	10	11	12	13	14	15	16
С	В	В	С	В	D	D	Α
17	18	19	20	21	22	-	-
С	В	В	В	D	Α	-	-

Q2 Time in the car park = 3 hours 20 minutes. Pay \$18.

Q3 No mean, median and range for categorical data.

Q4
$$\cos\theta = \frac{8}{x}, \ x = \frac{8}{\cos\theta}$$
 A

Q5

Q6 Number of years = 2009 - 1984 = 25, 3% = 0.03, compounded annually.

Q7
$$\begin{pmatrix} 4\\ 2 \end{pmatrix} = 6$$
 A

Q8
$$\frac{90}{75+90} \times 100\% \approx 55\%$$
 D

Q9 5 out of 20 numbers are less 6,
$$\frac{5}{20} \times 120 = 30$$

Q10 Let
$$x$$
 be the normal hourly rate.
35x+5×2x = 561.60, 45x = 561.60, x = 12.48 B

Q11 Area of quarter-circle
$$= \frac{1}{4} \times \pi r^2 = \frac{1}{4} \times \pi 8^2 \approx 50.3 \text{ cm}^2$$

Area of triangle $= \frac{1}{2} \times 4 \times 4 = 8 \text{ cm}^2$
Shaded area $= 50.3 - 8 \approx 42 \text{ cm}^2$ B

Q12
$$0.0075 \text{ m}^2 = 0.0075 \times (100 \text{ cm})^2 = 75 \text{ cm}^2$$
 C

Q13 Average % change over 6 months $=\frac{18000-50000}{50000}\times100\% = -64\%$ Average % change per month $\frac{-64\%}{6} \approx -11\%$ Decrease by 11%. Q14 Straight line gradient of 6 means when x increases by 1, A increases by 6. \therefore when x increases by 2, A increases by $2 \times 6 = 12$.

Q15
$$v = \frac{3mn^2}{r}, n^2 = \frac{rv}{3m}, n = \pm \sqrt{\frac{rv}{3m}}$$
 D

Q16
$$t \propto \frac{1}{v}$$
 A

Q17 Number of weeks = $35 \times 52 = 1820$ Interest rate per week = $\frac{0.08}{52}$

Q18
$$\frac{20}{x} = \frac{8}{36}, x = \frac{20 \times 36}{8} = 90$$
 B

Q19 Radius Of cylinder =
$$\frac{12}{2}$$
 = 6 cm
Height of cylinder = 2×12 = 24 cm
Volume of cylinder = $\pi r^2 h = \pi \times 6^2 \times 24 \approx 2714$ cm³ B

Q20 Loan amount =
$$3499 - 1000 = $2499$$

Total of instalments = $135.36 \times 24 = 3248.64
Interest = $3248.64 - 2499 = 749.64
Simple interest rate p. a. = $\frac{749.64}{2 \times 2499} \times 100\% \approx 15\%$ B

Q21 Total before inclusion =
$$14 \times 10 = 140$$

Total after inclusion = $16 \times 12 = 192$
Sum of the two additional scores = $192 - 140 = 52$
Mean of the two additional scores = $\frac{52}{2} = 26$

Q22
$$\triangle DAC$$
 is isosceles, $\therefore \angle A = \frac{180 - 80}{2} = 50^{\circ}$
 $\therefore \angle ABD = 180 - (50 + 60) = 70^{\circ}$
The sine rule: $\frac{AB}{\sin 60^{\circ}} = \frac{30}{\sin 70^{\circ}}$, $AB = \frac{30 \sin 60^{\circ}}{\sin 70^{\circ}} \approx 28 \text{ cm}$ A

Section II

С

С

С

D

А

С

В

Q23ai Height of building =
$$25 \tan 38^\circ = 19.5 \text{ m}$$

Q23aii Angle of depression = $\tan^{-1}\left(\frac{19.5}{62}\right) \approx 17^{\circ}$

Q23bi $10^4 = 10000$

© Copyright 2009 itute.com

Q23bii Number of permutation = 2×10^3 ,

probability = $\frac{1}{2 \times 10^3} = 0.0005$.

Q23ci Area of the two squares – area of the overlapping square $= 2 \times 2.7^2 - 0.9^2 = 13.77 \text{ m}^2$.

Q23cii $13.77 + 10\% \times 13.77 = 15.147 \text{ m}^2$, :: 16 boxes are required. Total cost = $$55 \times 16 = 880 .

Q23di $4 + 0.30 \times 5 + 0.50 \times 2 + 0.50 \times 4 + 2.00 \times 2 = 12.50 .

Q23dii Let \$x be the maximum withdrawal fees. x+4=7, x=3.00

Q24ai 78 has the highest frequency, it is the mode.

Q24aii The median = $\frac{45+47}{2}$ = 46, which is in the middle of the ordered data set.

Q24bi 8 million dollars.

Q24bii Total profit = 5 - 1 = 4 million dollars.

Q24c Possible decision: closure of a school in the area. Justification: Not enough school age children living in the area.

Q24di y = 200 - x

Q24dii In any week, the maximum number of pairs of boots made is $x_{max} = 120$, and the number of pairs of sandals made is $y_{max} = 150$.

Q24diii At *B*, profit = $24 \times 50 + 15 \times 150 = 3450 . At *C*, profit = $24 \times 120 + 15 \times (200 - 120) = 4080 . The profit at *C* is greater than the profit at *B* by 4080 - 3450 = \$630.

Q24ei $\frac{3600}{3} = 1200

Q24eii The computer retains 70% of its previous year value. 70% of a non-zero value > 0. \therefore it would never be worth nothing, assuming that nothing means exactly zero.

Initial value \$3600; a year later $3600 \times \frac{70}{100}$, another year later $3600 \times \left(\frac{70}{100}\right)^2$, another year later $3600 \times \left(\frac{70}{100}\right)^3$, etc.

Q5a 5-2(x+7)=5-2x-14=-2x-9

Q25b 50 mg = 50×10^{-3} g Mass of each microbe = $\frac{50 \times 10^{-3}}{2.5 \times 10^{6}} = 2.0 \times 10^{-8}$ g

Q25ci
$$A \approx \frac{h}{3} (d_f + 4d_m + d_l)$$

= $\frac{12}{3} (0 + 4(35 + 20 - 22 - 5) + (35 + 20 - 30 - 10)) = 508 \text{ m}^2$

Q25cii Volume of water = $508 \times 0.60 = 304.8 \text{ m}^3 = 304800 \text{ L}.$ Number of times = $\frac{304800}{4} = 76200$.

Q25di z-score of -1 = 25.8 - 4.2 = 21.6 °C.

Q25dii 21.6°C and 38.4°C correspond to $\mu - \sigma$ and $\mu + 3\sigma$ respectively.

Required
$$\% = \frac{68\%}{2} + \frac{99.7\%}{2} = 83.85\%$$

Q26ai IQR for boys = 6 - 2 = 4

Q26aii 75%

Q26aiii Same number of boys and girls in the school.

Q26bi 135+105 = 240,
$$\frac{240}{360} \times 24 = 16$$
 hours

Q26bii Wind the clock forward by 16 hours, 1 pm Tuesday.

Q26biii Wind the clock backward by 16 hours, 6 pm Wednesday. 14 hours later, 8 am Thursday.

Q26ci $2200 \times 12 \times 20 = 528000

Q26cii
$$A = 299300 \times \frac{6}{12 \times 100} = $1496.50$$

 $B = 299300 + 1496.50 - 2200 = 298596.50

Q26ciii(1)
$$N = M \left\{ \frac{(1+r)^n - 1}{r(1+r)^n} \right\},$$

 $300000 = M \left\{ \frac{\left(1 + \frac{6}{12 \times 100}\right)^{240} - 1}{\frac{6}{12 \times 100} \left(1 + \frac{6}{12 \times 100}\right)^{240}} \right\}.$

Q26ciii(2) $300000 = M \left\{ \frac{1.005^{240} - 1}{0.005 \times 1.005^{240}} \right\},$ M = \$2149.29.

© Copyright 2009 itute.com

Q27ai 6.4684×5000 = \$32342

Q27aii $\frac{407100}{8.1420} = 50000

Q27aiii $A = M\left\{\frac{(1+r)^n - 1}{r}\right\} = 1000\left\{\frac{(1+0.01)^8 - 1}{0.01}\right\} = \8285.67 Interest = $\$2\$5.67 - 1000 \times \$ = \$2\$5.67$.

Q27bi

True bearing of $180 + 58 + 74 = 312^{\circ}$

Q27bii
$$RP = \sqrt{2.7^2 + 1.8^2 - 2 \times 2.7 \times 1.8 \cos 74^\circ} \approx 2.8 \text{ km}$$

Q27biii Area = $\frac{1}{2} \times 2.7 \times 1.8 \times \sin 74^{\circ} \approx 2.34 \text{ km}^2$

Q27c For Mary, $Pr(at_least_one) = Pr(one) + Pr(two)$

$$=\frac{2}{100} + 0 = 0.02.$$

For Jane, $Pr(at_least_one) = Pr(one) + Pr(two)$

 $=\frac{2}{100}+\frac{1}{100}\times\frac{1}{100}=0.0201.$

: Jane has the better chance.

Q28ai

Q28aii When s = 40, d = 44; when s = 70, d = 98. Difference in d = 98 - 44 = 54 metres.

Q28bi Strong, positive.

Q28bii Select 2 points on the line of best fit: (80,10.4), (40,1.2).

Gradient = $\frac{10.4 - 1.2}{80 - 40} = 0.23$. $\therefore M = 0.23H + c$, $\therefore 1.2 = 0.23 \times 40 + c$, $\therefore c = -8$. Hence M = 0.23H - 8.

Q28c $h \propto d^2$, where *h* is the height above the ground, in metres, of a person's eyes, and *d* is the distance, in kilometres, that the person can see to the horizon.

 $\therefore h = kd^2$, where k is the constant of proportionality.

 $\therefore 1.6 = k \times 4.5^2$, and hence k = 0.079.

When d = 15, $h = 0.079 \times 15^2 \approx 17.8$ m.

Q28d The sample space is the set of differences, i.e. $\{0,1,2,3,4,5\}$.

In the following table, frequency = $18 \times$ probability.

Difference	0	1	2	3	4	5
Probability	6/36	10/36	8/36	6/36	4/36	2/36
Frequency	3	5	4	3	2	1

Juan is correct.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors.