2009 NSW BOS General Mathematics Solutions

Free download and print from www.itute.com ©Copyright 2009 itute.com

Section I

1	2	3	4	5	6	7	8
\mathbf{C}	\mathbf{C}	\mathbf{C}	\mathbf{A}	\mathbf{D}	\mathbf{A}	\mathbf{A}	\mathbf{D}

9	10	11	12	13	14	15	16
\mathbf{C}	\mathbf{B}	\mathbf{B}	\mathbf{C}	\mathbf{B}	\mathbf{D}	\mathbf{D}	\mathbf{A}

17	18	19	20	21	22	-	-
\mathbf{C}	\mathbf{B}	\mathbf{B}	\mathbf{B}	\mathbf{D}	\mathbf{A}	-	-

Q1

Q2 Time in the car park $=3$ hours 20 minutes. Pay $\$ 18$.
Q3 No mean, median and range for categorical data.
Q4 $\cos \theta=\frac{8}{x}, x=\frac{8}{\cos \theta}$

Q5
Q6 Number of years $=2009-1984=25,3 \%=0.03$, compounded annually.

Q7 $\binom{4}{2}=6$

Q8 $\frac{90}{75+90} \times 100 \% \approx 55 \%$

Q9 5 out of 20 numbers are less $6, \frac{5}{20} \times 120=30$
Q10 Let $\$ x$ be the normal hourly rate.
$35 x+5 \times 2 x=561.60,45 x=561.60, x=12.48$

Q11 Area of quarter-circle $=\frac{1}{4} \times \pi r^{2}=\frac{1}{4} \times \pi 8^{2} \approx 50.3 \mathrm{~cm}^{2}$
Area of triangle $=\frac{1}{2} \times 4 \times 4=8 \mathrm{~cm}^{2}$
Shaded area $=50.3-8 \approx 42 \mathrm{~cm}^{2}$

Q12 $0.0075 \mathrm{~m}^{2}=0.0075 \times(100 \mathrm{~cm})^{2}=75 \mathrm{~cm}^{2}$
Q13 Average \% change over 6 months
$=\frac{18000-50000}{50000} \times 100 \%=-64 \%$
Average $\%$ change per month $\frac{-64 \%}{6} \approx-11 \%$
Decrease by 11%.
Q14 Straight line gradient of 6 means when x increases by $1, A$ increases by $6 . \therefore$ when x increases by $2, A$ increases by

B $2 \times 6=12$.

Q15 $v=\frac{3 m n^{2}}{r}, n^{2}=\frac{r v}{3 m}, n= \pm \sqrt{\frac{r v}{3 m}}$
$\mathrm{Q} 16 t \propto \frac{1}{v}$
A

Q17 Number of weeks $=35 \times 52=1820$
C Interest rate per week $=\frac{0.08}{52}$

Q18 $\frac{20}{x}=\frac{8}{36}, x=\frac{20 \times 36}{8}=90$

B Q22 $\triangle D A C$ is isosceles, $\therefore \angle A=\frac{180-80}{2}=50^{\circ}$
$\therefore \angle A B D=180-(50+60)=70^{\circ}$
The sine rule: $\frac{A B}{\sin 60^{\circ}}=\frac{30}{\sin 70^{\circ}}, A B=\frac{30 \sin 60^{\circ}}{\sin 70^{\circ}} \approx 28 \mathrm{~cm}$

Section II

Q23ai Height of building $=25 \tan 38^{\circ}=19.5 \mathrm{~m}$
Q23aii Angle of depression $=\tan ^{-1}\left(\frac{19.5}{62}\right) \approx 17^{\circ}$

Q23bi $10^{4}=10000$
Q21 Total before inclusion $=14 \times 10=140$
Total after inclusion $=16 \times 12=192$
Sum of the two additional scores $=192-140=52$
C Mean of the two additional scores $=\frac{52}{2}=26$
Total of instalments $=135.36 \times 24=\$ 3248$
Interest $=3248.64-2499=\$ 749.64$
A
Simple interest rate p. a. $=\frac{749.64}{2 \times 2499} \times 100 \% \approx 15 \%$
A Q19 Radius 0f cylinder $=\frac{12}{2}=6 \mathrm{~cm}$
Height of cylinder $=2 \times 12=24 \mathrm{~cm}$
D Volume of cylinder $=\pi r^{2} h=\pi \times 6^{2} \times 24 \approx 2714 \mathrm{~cm}^{3}$

A
Q20 Loan amount $=3499-1000=\$ 2499$
Total of instalments $=135.36 \times 24=\$ 3248.64$

C

B

Q23bii Number of permutation $=2 \times 10^{3}$,
probability $=\frac{1}{2 \times 10^{3}}=0.0005$.
Q23ci Area of the two squares - area of the overlapping square $=2 \times 2.7^{2}-0.9^{2}=13.77 \mathrm{~m}^{2}$.

Q23cii $13.77+10 \% \times 13.77=15.147 \mathrm{~m}^{2}, \therefore 16$ boxes are required. Total cost $=\$ 55 \times 16=\$ 880$.

Q23di $4+0.30 \times 5+0.50 \times 2+0.50 \times 4+2.00 \times 2=\$ 12.50$.
Q23dii Let $\$ x$ be the maximum withdrawal fees.
$x+4=7, x=3.00$

Q24ai 78 has the highest frequency, it is the mode.
Q24aii The median $=\frac{45+47}{2}=46$, which is in the middle of the ordered data set.

Q24bi 8 million dollars.
Q24bii Total profit $=5-1=4$ million dollars.
Q24c Possible decision: closure of a school in the area. Justification: Not enough school age children living in the area.

Q24di $y=200-x$
Q24dii In any week, the maximum number of pairs of boots made is $x_{\text {max }}=120$, and the number of pairs of sandals made is $y_{\text {max }}=150$.

Q24diii At B, profit $=24 \times 50+15 \times 150=\$ 3450$.
At C, profit $=24 \times 120+15 \times(200-120)=\$ 4080$.
The profit at C is greater than the profit at B by $4080-3450=\$ 630$.

Q24ei $\frac{3600}{3}=\$ 1200$
Q24eii The computer retains 70\% of its previous year value. 70% of a non-zero value $>0 . \therefore$ it would never be worth nothing, assuming that nothing means exactly zero.

Initial value $\$ 3600$; a year later $3600 \times \frac{70}{100}$, another year later $3600 \times\left(\frac{70}{100}\right)^{2}$, another year later $3600 \times\left(\frac{70}{100}\right)^{3}$, etc.

Q5a $5-2(x+7)=5-2 x-14=-2 x-9$

Q25b $50 \mathrm{mg}=50 \times 10^{-3} \mathrm{~g}$
Mass of each microbe $=\frac{50 \times 10^{-3}}{2.5 \times 10^{6}}=2.0 \times 10^{-8} \mathrm{~g}$
Q25ci $\quad A \approx \frac{h}{3}\left(d_{f}+4 d_{m}+d_{l}\right)$
$=\frac{12}{3}(0+4(35+20-22-5)+(35+20-30-10))=508 \mathrm{~m}^{2}$
Q25cii Volume of water $=508 \times 0.60=304.8 \mathrm{~m}^{3}=304800 \mathrm{~L}$.
Number of times $=\frac{304800}{4}=76200$.
Q25di z-score of $-1=25.8-4.2=21.6^{\circ} \mathrm{C}$.
Q25dii $21.6^{\circ} \mathrm{C}$ and $38.4^{\circ} \mathrm{C}$ correspond to $\mu-\sigma$ and $\mu+3 \sigma$ respectively.
Required $\%=\frac{68 \%}{2}+\frac{99.7 \%}{2}=83.85 \%$

Q26ai IQR for boys $=6-2=4$
Q26aii 75\%
Q26aiii Same number of boys and girls in the school.
Q26bi $135+105=240, \frac{240}{360} \times 24=16$ hours
Q26bii Wind the clock forward by 16 hours, 1 pm Tuesday.
Q26biii Wind the clock backward by 16 hours, 6 pm Wednesday. 14 hours later, 8 am Thursday.

Q26ci $2200 \times 12 \times 20=\$ 528000$
Q26cii $A=299300 \times \frac{6}{12 \times 100}=\$ 1496.50$
$B=299300+1496.50-2200=\$ 298596.50$
Q26ciii(1) $N=M\left\{\frac{(1+r)^{n}-1}{r(1+r)^{n}}\right\}$,
$300000=M\left\{\frac{\left(1+\frac{6}{12 \times 100}\right)^{240}-1}{\frac{6}{12 \times 100}\left(1+\frac{6}{12 \times 100}\right)^{240}}\right\}$.
Q26ciii(2) $300000=M\left\{\frac{1.005^{240}-1}{0.005 \times 1.005^{240}}\right\}$,
$M=\$ 2149.29$.

Q27ai $6.4684 \times 5000=\$ 32342$
Q27aii $\frac{407100}{8.1420}=\$ 50000$
Q27aiii $A=M\left\{\frac{(1+r)^{n}-1}{r}\right\}=1000\left\{\frac{(1+0.01)^{8}-1}{0.01}\right\}=\$ 8285.67$
Interest $=8285.67-1000 \times 8=\$ 285.67$.

Q27bi

True bearing of $180+58+74=312^{\circ}$

Q27bii $R P=\sqrt{2.7^{2}+1.8^{2}-2 \times 2.7 \times 1.8 \cos 74^{\circ}} \approx 2.8 \mathrm{~km}$

Q27biii Area $=\frac{1}{2} \times 2.7 \times 1.8 \times \sin 74^{\circ} \approx 2.34 \mathrm{~km}^{2}$
Q27c For Mary, $\operatorname{Pr}($ at_least_one $)=\operatorname{Pr}($ one $)+\operatorname{Pr}($ two $)$
$=\frac{2}{100}+0=0.02$.
For Jane, $\operatorname{Pr}($ at_least_one $)=\operatorname{Pr}($ one $)+\operatorname{Pr}($ two $)$
$=\frac{2}{100}+\frac{1}{100} \times \frac{1}{100}=0.0201$.
\therefore Jane has the better chance.

Q28ai

Q28aii When $s=40, d=44$; when $s=70, d=98$.
Difference in $d=98-44=54$ metres.

Q28bi Strong, positive.
Q28bii Select 2 points on the line of best fit: $(80,10.4)$, (40,1.2).
Gradient $=\frac{10.4-1.2}{80-40}=0.23$.
$\therefore M=0.23 H+c, \therefore 1.2=0.23 \times 40+c, \therefore c=-8$.
Hence $M=0.23 H-8$.

Q28c $h \propto d^{2}$, where h is the height above the ground, in metres, of a person's eyes, and d is the distance, in kilometres, that the person can see to the horizon.
$\therefore h=k d^{2}$, where k is the constant of proportionality.
$\therefore 1.6=k \times 4.5^{2}$, and hence $k=0.079$.
When $d=15, h=0.079 \times 15^{2} \approx 17.8 \mathrm{~m}$.

Q28d The sample space is the set of differences, i.e. $\{0,1,2,3,4,5\}$.
In the following table, frequency $=18 \times$ probability.

Difference	0	1	2	3	4	5
Probability	$6 / 36$	$10 / 36$	$8 / 36$	$6 / 36$	$4 / 36$	$2 / 36$
Frequency	3	5	4	3	2	1

Juan is correct.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors.

