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Proofs of concurrency of  (a) altitudes 

(b) perpendicular bisectors (c) medians of any triangle by vector methods. (Suitable for years 11, 12)
Preliminaries:

(1) Two non-zero vectors are perpendicular if their dot product equals zero.

(2) If pa + qb = 0, and a and b are independent vectors, then p = q = 0.

(3) If M is the mid-point of 
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 are altitudes and 
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 is a line segment passing through the intersection O of 
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c – a and b.(c – a) = 0, 
[image: image13.wmf]=

BC

c – b and a. (c – b) = 0. 

Hence b.c – b.a = 0 and a.c – a.b = 0, 
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b.c – a.c = 0,

or (b – a).c = 0, i.e. c is perpendicular to 
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 and hence 
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 is perpendicular to 
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, i.e. 
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 is an altitude. Hence the three altitudes are concurrent. A similar proof can be constructed for an obtuse triangle. Try it as an exercise.
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a – b. Since M, N and P are mid-points, 
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(a + b). Since 
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Hence |c|2 – |b|2 = 0 and |c|2 – |a|2 = 0, 
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|a| = |b| = |c|. 
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(a + b).(a – b) = 
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[ |a|2 – |b|2 ] = 0, 
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 is perpendicular to 
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 it is a perpendicular bisector of 
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. Hence the three perpendicular bisectors are concurrent.
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(a + c). Let m, n and p be some positive  constants such that 
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(a + c). From the last two equations, –2ma – b = –2nb – a, hence (1 – 2m)a – (1 – 2n)b = 0. Since a and b are not parallel, 
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they are independent and hence 1 – 2m = 0 and  –(1 – 2n) = 0, i.e. m = n = 
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b – a = –2a – c. Let 
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 where k is a positive constant. 
[image: image72.wmf]\

 –a – pc = k(–2a – c) or 

(2k – 1)a + (k – p)c = 0. Since a and c are independent, 
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 is a median. Hence the three medians are concurrent and the intersection trisects each one.
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