1. Vectors \mathbf{a} and \mathbf{b} are as shown. Construct vectors $\mathbf{b}+\mathbf{a}$ and $\mathbf{a}-\mathbf{b}$.

2. Vector \mathbf{r} has a magnitude of 10 and makes angles of $30^{\circ}, 45^{\circ}$ and 60° respectively with \mathbf{i}, \mathbf{j} and \mathbf{k}. Express \mathbf{r} in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
3. Find the magnitude of $\mathbf{p}=3 \mathbf{i}-4 \mathbf{j}+5 \mathbf{k}$, and the exact values of $\cos \alpha, \cos \beta$ and $\cos \gamma$, where α, β and γ are the angles that \mathbf{p} makes with the x, y and z axes respectively.
4. Find the values of c and d so that $2 \mathbf{i}+2 \mathbf{j}-c \mathbf{k}$ is perpendicular to $\mathbf{i}+d \mathbf{j}+6 \mathbf{k}$.
5. Refer to Q1. Describe a vector that is linearly independent of \mathbf{a} and \mathbf{b}.
6. Find the scalar product of the two vectors shown below.

7. Find the projection of $\mathbf{i}+\mathbf{k}$ onto $-\mathbf{i}+\mathbf{j}-2 \mathbf{k}$, i.e. the scalar resolute of $\mathbf{i}+\mathbf{k}$ in the direction of $-\mathbf{i}+\mathbf{j}-2 \mathbf{k}$.
8. Resolve $10 \mathbf{i}+7 \mathbf{j}-11 \mathbf{k}$ into two components, one is parallel to $4 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$ and the other perpendicular to it.

Numerical, algebraic and worded answers.
2. E.g. a vector that points
out of (or into) the page.
3. E.g. $\mathbf{c}=2 \mathbf{p}-\mathbf{q}+0.2 \mathbf{s}$
4. $5 \sqrt{ } 3 \mathbf{i}+5 \sqrt{ } 2 \mathbf{j}+5 \mathbf{k}$
5. $5 \sqrt{ } 2,3 \sqrt{ } 2 / 10,-4 \sqrt{ } 2 / 10, \sqrt{ } 2 / 2$
6. 12.5
7. $c \in R, d=3 c-1$
8. $-\sqrt{ } 6 / 2$
9. $-11 \mathbf{k}, 10 \mathbf{i}+7 \mathbf{j}$
10. $12 \mathbf{i}+6 \mathbf{j}-9 \mathbf{k},-2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$
11. $|\mathbf{c}| / \sqrt{ }\left(|\mathbf{a}|^{2}+|\mathbf{b}|^{2}+|\mathbf{c}|^{2}\right)$

