= Year 12 = Vectors = Worksheet 1	
1. Vectors a and b are as shown. Construct vectors $\mathbf{b} + \mathbf{a}$ and $\mathbf{a} - \mathbf{b}$.	2. Refer to Q1. Describe a vector that is linearly independent of a and b .
3. Find a vector c that is linearly dependent on vectors p , q and r .	4. Vector r has a magnitude of 10 and makes angles of 30°, 45° and 60° respectively with i , j and k . Express r in terms of i , j and k .
5. Find the magnitude of $\mathbf{p} = 3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}$, and the exact values of $\cos \alpha$, $\cos \beta$ and $\cos \gamma$, where α , β and γ are the angles that \mathbf{p} makes with the <i>x</i> , <i>y</i> and <i>z</i> axes respectively.	6. Find the scalar product of the two vectors shown below.
7. Find the values of <i>c</i> and <i>d</i> so that $2\mathbf{i} + 2\mathbf{j} - c\mathbf{k}$ is perpendicular to $\mathbf{i} + d\mathbf{j} + 6\mathbf{k}$.	8. Find the projection of $\mathbf{i} + \mathbf{k}$ onto $-\mathbf{i} + \mathbf{j} - 2\mathbf{k}$, i.e. the scalar resolute of $\mathbf{i} + \mathbf{k}$ in the direction of $-\mathbf{i} + \mathbf{j} - 2\mathbf{k}$.
9. Resolve $10\mathbf{i} + 7\mathbf{j} - 11\mathbf{k}$ into two components, one is parallel to $5\mathbf{k}$ and the other perpendicular to it.	10. Resolve $10\mathbf{i} + 7\mathbf{j} - 11\mathbf{k}$ into two components, one is parallel to $4\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ and the other perpendicular to it.
11. a , b and c are orthogonal vectors. Express the cosine of the	Numerical, algebraic and worded answers.
angle between $\mathbf{a} + \mathbf{b} + \mathbf{c}$ and \mathbf{c} in terms of \mathbf{a} , \mathbf{b} and \mathbf{c} .	2. E.g. a vector that points out of (or into) the page. 3. E.g. $c = 2p - q + 0.2s$ 4. 5/3i +5/2j +5k 5. 5/2. 3/2 /10, -4/2 /10, /2 /2 6. 12.5 7. $c \in R, d = 3c - 1$ 8. $-\sqrt{6}/2$ 9. $-11k$, $10i + 7j$ 10. $12i + 6j - 9k$, $-2i + j - 2k$ 11. $ c /\langle a ^2 + b ^2 + c ^2 \rangle$