
2012 VCAA Further Mathematics Exam 2 Solutions © 2012 itute.com

Free download from www.itute.com
Core - Data analysis
Q1ai There are 30 dots. The median is between the $15^{\text {th }}$ and the $16^{\text {th }}$ dots, i.e. $20^{\circ} \mathrm{C}$

Q1aii There are 7 dots on the left of (less than) $16^{\circ} \mathrm{C}$.
Percentage of days $=\frac{7}{30} \times 100 \% \approx 23.3 \%$
Q1b $14=9.5+2 \times 2.25$, i.e. $\mu+2 \sigma$

Percentage of days $\approx 95 \%+2.5 \%=97.5 \%$
Q2a Two convenient points used to sketch the regression line are $(0,13)$ and $(20,26.4)$.

Q2b When the minimum temperature is $0^{\circ} \mathrm{C}$, the maximum temperature is $13^{\circ} \mathrm{C}$.

Q2c Given $r=0.630$, strength: moderate; direction: positive
Q2d When the minimum temperature increases by $1^{\circ} \mathrm{C}$, the maximum temperature increases by $0.67^{\circ} \mathrm{C}$.

Q2e $r^{2}=0.630^{2} \approx 0.40$, i.e. 40%
Q2f When the minimum temperature was $11.1^{\circ} \mathrm{C}$, the predicted maximum temperature $=13+0.67 \times 11.1 \approx 20.44^{\circ}$ Residual $=12.2-20.44 \approx-8^{\circ} \mathrm{C}$

Q3a

Q3b

Q4a By CAS, $(w s 3.00 \mathrm{pm})^{2}=3.4+6.6 \times w s 9.00 \mathrm{am}$
Q4b When $w s 9.00 a m=24,(w s 3.00 \mathrm{pm})^{2} \approx 161.8$, ws $3.00 \mathrm{pm} \approx 13$

Module 1: Number patterns

Q1a $d=162-168$ or $156-162=-6$
Q1b $t_{6}=168+(6-1) \times^{-} 6=138$
Q1c There is a difference of 6 blocks from one month to the next, the difference $=6 \times 2=12$ blocks

Q1di $S_{18}=\frac{18}{2}(2 \times 168+(18-1) \times-6)=2106$ blocks
Q1dii The month (n) when $t_{n}=0,168+(n-1) \times^{-} 6=0, n=29$ Total number of blocks in the estate
$=S_{29}=\frac{29}{2}(2 \times 168+(29-1) \times-6)=2436$
Number of blocks left after 18 months $=2436-2106=330$
Q2a $\quad 1^{\text {st }}$ year $\quad 2^{\text {nd }}$ year $\quad 3^{\text {rd }}$ year
$\begin{array}{lll}t_{1} & t_{2} & t_{3}\end{array}$
$16 \quad 16 \times 1.5 \quad 16 \times 1.5^{2} \quad \ldots \ldots$
$t_{3}=16 \times 1.5^{2}=36$ building applications
Q2b Keep on multiplying by 1.5 until 100 is first exceeded, $t_{6}=16 \times 1.5^{5}=121.5$, i.e. the $6^{\text {th }}$ year.
Q2c $S_{5}=\frac{16\left(1.5^{5}-1\right)}{1.5-1}=211$
Q2d By CAS, or repeating calculation with increasing n, S_{6}, $S_{7}, \ldots \ldots, S_{8} \approx 788, S_{9} \approx 1198 \ldots$ the $9^{\text {th }}$ year

Q2e $t_{n+1}=a \times t_{n}+b, t_{1}=c$
Given that it forms a geometric sequence,.$: b=0$ and $a=1.5$. $c=t_{1}=16$

Q3a $P_{n+1}=0.96 \times P_{n}+500$
$P_{1}=50$
$P_{2}=0.96 \times P_{1}+500=0.96 \times 50+500=548$
$P_{3}=0.96 \times P_{2}+500=0.96 \times 548+500 \approx 1026$, the population at the end of the third year is 1026 .

Q3b By CAS, or repeating calculation with increasing n, P_{4}, $P_{5}, \ldots \ldots, P_{10} \approx 3878, P_{11} \approx 4223$, at the end of the $11^{\text {th }}$ year.

Q3c At the end of the nth year, P_{n}
$=50 \times 0.96^{n-1}+500+500 \times 0.96+500 \times 0.96^{2}+\ldots+500 \times 0.96^{n-2}$
When n is very large, $50 \times 0.96^{n-1}$ approaches 0 , the remaining terms form an infinite geometric series $S_{\infty}=\frac{500}{1-0.96}=12500$.
\therefore the greatest possible population is 12500 according to this mathematical model.

Module 2: Geometry and trigonometry

Q 1 a Area of the rectangular block $=50 \times 85=4250 \mathrm{~m}^{2}$
Q1b Volume of the prism $=\frac{1}{2} \times(20 \times 25 \times 4)=1000 \mathrm{~m}^{3}$
Q1c $A F=D E=\sqrt{4^{2}+25^{2}} \approx 25.32 \mathrm{~m}$
Total length of fencing $=25.32+20+25.32+20 \approx 90.6 \mathrm{~m}$
Q2a Difference in height $=14-2=12 \mathrm{~m}$
Q2b

Q2ci Bearing of S from $P=42^{\circ}+90^{\circ}=132^{\circ}$

Q2cii Bearing of S from $R=180^{\circ}+42^{\circ}=222^{\circ}$
Q3a $\angle S T P=180^{\circ}-\left(72^{\circ}+47^{\circ}\right)=61^{\circ}$
The sine rule: $\frac{S T}{\sin 47^{\circ}}=\frac{50}{\sin 61^{\circ}}, S T \approx 41.81 \mathrm{~m}$
Q3b

$\frac{h}{41.81}=\tan 22^{\circ}, h=41.81 \times \tan 22^{\circ} \approx 16.9 \mathrm{~m}$
Q4a $\frac{O A}{10}=\cos 30^{\circ}, O A=10 \times \cos 30^{\circ} \approx 8.66 \mathrm{~m}$
Q4b Area of $\triangle O A B=\frac{1}{2} \times 8.66 \times 10 \times \sin 30^{\circ} \approx 21.7 \mathrm{~m}^{2}$
Q4c $\frac{\text { area.of } . ~}{\text { a }}$ aCD area.of $. \triangle O B C=\left(\frac{O C}{O B}\right)^{2}, \frac{\text { area.of. } \triangle O C D}{35}=\left(\frac{14}{10}\right)^{2}$
area.of. $\triangle O C D=35 \times 1.4^{2} \approx 68.6 \mathrm{~m}^{2}$
Q4d $B C=\sqrt{10^{2}+14^{2}-2 \times 10 \times 14 \times \cos 30^{\circ}} \approx 7.315 \mathrm{~m}$
$\frac{\sin \angle B C O}{10}=\frac{\sin 30^{\circ}}{7.315}, \sin \angle B C O \approx 0.6835, \angle B C O \approx 43^{\circ}$
$\therefore \angle C D O=\angle B C O \approx 43^{\circ}$

Module 3: Graphs and relations

Q1ai Gradient $=\frac{35000-20000}{300-0}=50$ dollars per phone
Q1aii $C=20000+50 n$
Q1bi

Note: Point $(0,0)$ is undefined.

Q1bii $R=150 n, 54000=150 n, n=360$
Q1c To break even, $R=C, 150 n=20000+50 n, n=200$
Q2a To obtain a profit, $R>C, 600 n>320 n+125000$
$\therefore n>446.43$, minimum $n=447$
Q2b Let $\$ p$ be the new selling price of each laptop.
To break even, $R=C$, $p n=320 n+125000+50 n$
To break even when $n=400$,
$p \times 400=320 \times 400+125000+50 \times 400, p=682.50$
Q3a The time available to repair x phones and y laptops is 1750 minutes.

Q3b $y \leq \frac{4}{5} \times 10, .: y \leq 8, .: 8$
Q3c

Q3d Read from the graph, 18 laptops.
Q3e $35 x+50 y \leq 1750$, when $y=9, x<37.14$
.: maximum $x=37$
Q3fi Profit $=60 x+100 y$. To maximise the profit, repair 24 phones and 18 laptops (from graph).

Q3fii Maximum profit $=60 \times 24+100 \times 18=3240$ dollars

Module 4: Business-related mathematics

Q1a Deposit $=\$ 8360 \times \frac{15}{100}=\$ 1254$

Q1bi Amount owing $=\$ 8360-\$ 1254=\$ 7106$
Q1bii Total interest paid $=\$ 650 \times 12-\$ 7106=\$ 694$
Q1c Price before $G S T=\frac{\$ 8360}{1+\frac{10}{100}}=\$ 7600$

Q2a Depreciated value $=\$ 8360-\$ 0.22 \times 3800 \times 3=\$ 5852$
Q2b Flat rate depreciation $=\$ 8360 \times \frac{10}{100}=\$ 836$
Unit cost depreciation $=\$ 0.22 \times 3800=\$ 836$, the same.
Q2c The equipment will be written off with a depreciated value of $\$ 0$ after $\frac{8360}{836}=10$ years

Q2d Depreciated value $=\$ 8360 \times\left(1-\frac{14}{100}\right)^{10} \approx \$ 1850$
Q3a Use CAS TVM Solver to obtain $\$ 807.23$

Q3b Use CAS TVM Solver to obtain 46.47, i.e. 47 months
Q3ci Balance of the loan account $=40000 \times\left(1+\frac{7.8}{12 \times 100}\right)^{12}$

Q3cii Monthly interest $=\$ 43234 \times \frac{7.8}{12 \times 100} \approx \$ 281.02$
Q4a Let r be the annual interest rate.
$80000 \times \frac{r}{4 \times 100}=1260, r=6.3$
Q4b The investment amount remains the same, i.e. $\$ 80000$
Q4c Use CAS TVM Solver To obtain \$35208 approximately. Set $\mathrm{P} / \mathrm{Y}=4$ and $\mathrm{C} / \mathrm{Y}=4$ for quarterly.

Module 5: Networks and decision mathematics

Q1ai $70+90=160 \mathrm{~m}$
Q1aii 2 vertices, the house and the top right location
Q1aiii An Eulerian path exists, starting from the house (odd degree) and finishing at the other odd-degree vertex with a distance of 1180 m . There is a another 70 m distance from this odd-degree vertex back to the house.
Total distance $=1180+70=1250 \mathrm{~m}$
Q1bi

Q1bii Minimum spanning tree
Q2a Activity E can start after activities A and D are finished. Earliest start time for $E=10+2=12$ days

Q2b To indicate that activities F, G and H have the same earliest start time.

Q2c Earliest start time for $H=10+5=15$ days
Q2d The critical path is $A B H I L M$.
Q2e The shortest time to complete all the activities
$=10+5+4+3+4+2=28$ days
Latest start time for activity $J=28-3=25$ days

Q3a 17
Q3b The minimum number of dashed lines must equal the number of tasks being allocated before allocation can be made.

Q3c

0	0	4	0
2	2	0	10
1	3	0	0
7	0	3	5

Q3d

Worker	Task
Julia	W
Ken	Z
Lana	X
Max	Y

Module 6: Matrices

Q1a

Anvil

Dantel

Q1b $A \rightarrow B \rightarrow D \rightarrow C$
Q1c $\quad G=K F=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0\end{array}\right]=\left[\begin{array}{llll}1 & 2 & 1 & 1\end{array}\right]$
Q1d Matrix G indicates the number of flights leaving each of the four cities,
e.g. second column of $G=1 \times 1+1 \times 0+1 \times 0+1 \times 1=2$, i.e. there are two flights leaving Berga, one flies to Anvil and one to Dantel.

Q2ai

$$
C=B A=\left[\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right]\left[\begin{array}{lll}
2 & 6 & 4 \\
1 & 3 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 2 \\
3 & 9 & 6
\end{array}\right]
$$

Q2aii The pattern is:

The disguise is 133926 .

Q2b $A=B^{-1} C=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]^{-1}\left[\begin{array}{lll}1 & 3 & 2 \\ 3 & 9 & 6\end{array}\right]=\left[\begin{array}{lll}2 & 6 & 4 \\ 1 & 3 & 2\end{array}\right]$
Q3a $70 \% \times 100+80 \% \times 200+90 \% \times 50=275$
Q3b The staff will not return after leaving the industrial site.
Q3ci
$S_{2012}=T S_{2011}=\left[\begin{array}{cccc}0.70 & 0 & 0 & 0 \\ 0.10 & 0.80 & 0 & 0 \\ 0 & 0.10 & 0.90 & 0 \\ 0.20 & 0.10 & 0.10 & 1.00\end{array}\right]\left[\begin{array}{c}100 \\ 200 \\ 50 \\ 0\end{array}\right]=\left[\begin{array}{c}70 \\ 170 \\ 65 \\ 45\end{array}\right]$
Q3cii
$S_{2013}=T^{2} S_{2011}=\left[\begin{array}{cccc}0.70 & 0 & 0 & 0 \\ 0.10 & 0.80 & 0 & 0 \\ 0 & 0.10 & 0.90 & 0 \\ 0.20 & 0.10 & 0.10 & 1.00\end{array}\right]^{2}\left[\begin{array}{c}100 \\ 200 \\ 50 \\ 0\end{array}\right]=\left[\begin{array}{c} \\ 143\end{array}\right]$
The expected number of operators at the beginning of 2013 is 143.

Q3ciii
$S_{2021}=T^{10} S_{2011}=\left[\begin{array}{cccc}0.70 & 0 & 0 & 0 \\ 0.10 & 0.80 & 0 & 0 \\ 0 & 0.10 & 0.90 & 0 \\ 0.20 & 0.10 & 0.10 & 1.00\end{array}\right]^{10}\left[\begin{array}{c}100 \\ 200 \\ 50 \\ 0\end{array}\right] \approx\left[\begin{array}{l}29.4 \\ \end{array}\right]$
.: year 2021
Q3civ
After many years (say 100), the state matrix becomes $\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 350\end{array}\right]$.
.: the total number of staff at the site $=0$
Q3d
$S_{2012}=T S_{2011}+A$
$=\left[\begin{array}{cccc}0.70 & 0 & 0 & 0 \\ 0.10 & 0.80 & 0 & 0 \\ 0 & 0.10 & 0.90 & 0 \\ 0.20 & 0.10 & 0.10 & 1.00\end{array}\right]\left[\begin{array}{c}100 \\ 200 \\ 50 \\ 0\end{array}\right]+\left[\begin{array}{c}30 \\ 20 \\ 10 \\ 0\end{array}\right]=\left[\begin{array}{c}100 \\ 190 \\ 75 \\ 45\end{array}\right]$
$S_{2013}=T S_{2012}+A$
$=\left[\begin{array}{cccc}0.70 & 0 & 0 & 0 \\ 0.10 & 0.80 & 0 & 0 \\ 0 & 0.10 & 0.90 & 0 \\ 0.20 & 0.10 & 0.10 & 1.00\end{array}\right]\left[\begin{array}{c}100 \\ 190 \\ 75 \\ 45\end{array}\right]+\left[\begin{array}{c}30 \\ 20 \\ 10 \\ 0\end{array}\right]=\left[\begin{array}{l}182 \\ \end{array}\right]$
.: the expected number of operators at the beginning of 2013 is 182.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors

