ii
 影
 :哊 :\#

Specialist Mathematies

2014

Trial Examination I

Instructions

Answer all questions. Do not use calculators.
A decimal approximation will not be accepted if an exact answer is required to a question.
In questions where more than one mark is available, appropriate working or explanation must be shown.
Unless otherwise indicated, the diagrams in this exam are not drawn to scale.

Question 1

Consider function f with the rule $f(x)=\left(\frac{1}{\sqrt{x}}-\sqrt{x}\right)^{2}+2$.
a. Simplify the rule of f.
\qquad
\qquad
b. Find the range of f.

1 mark
\qquad
\qquad
c. Sketch the graph of f. Show and label the turning point(s) and the asymptote(s) of f.
\qquad
\qquad

Question 2

Consider $g: R \rightarrow R, g(x)=\tan ^{-1}(3 x)+\tan ^{-1}(2 x)-\frac{\pi}{4}$.
a. Find the exact value(s) of x where $g(x)=0$.
\qquad
\qquad
\qquad
\qquad
b. Use the method of addition of ordinates to sketch the graph of g. Show and label the axis-intercept(s) and the asymptote(s) of g.
\qquad
\qquad

Question 3

a. Solve $\sqrt{3} z-\sqrt{2} i=\sqrt{2} i z+\sqrt{3}$ for z. Express your answer in $x+y i$ form.
\qquad
\qquad
b. $\quad P(z)$ is a cubic polynomial in z with real coefficients.

Given $P(z)=(z-i) Q(z)+1$ and $P(z)=(2 z-1) T(z)+1$ where $Q(z)$ and $T(z)$ are polynomials in z, solve $P(z)=0$ for z.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4

Consider $|z|-|3-z|=1$ where $z=x+y i$ and $x, y \in R$.
a. Express $|z|-|3-z|=1$ in the form $\frac{(x-h)^{2}}{a}-\frac{(y-k)^{2}}{b}=1$.
\qquad
\qquad
\qquad
\qquad
\qquad
b. Hence or otherwise sketch the graph of $|z|-|3-z| \leq 1$.

Question 5

Show that $\tilde{p}=\tilde{i}-\tilde{j}, \tilde{q}=2 \tilde{i}+\tilde{j}, \tilde{r}=\tilde{i}+2 \tilde{j}$ and $\tilde{s}=3 \tilde{i}-2 \tilde{j}$ are linearly dependent.
\qquad
\qquad
\qquad

Question 6

$A B C D E F G H$ is a cuboid. Use vector method to find the shortest distance in surd form from vertex G to line $A H$. 3 marks

\qquad
\qquad
\qquad
\qquad

Question 7

The solution curve to the differential equation $\frac{d y}{d x}+\frac{y}{x}=0$ passes through $(1,2)$.
a. Use Euler's method (first order approximation) to estimate the value of y at $x=2.5$.

Choose 0.5 as the step size.
2 marks
\qquad
\qquad
\qquad
b. Show that $x y=2$ is the equation of the solution curve.
c. If both x and y are functions of λ and $\frac{d y}{d \lambda}=-1$, find $\frac{d x}{d \lambda}$ at $x=1$.

1 mark

Question 8

Consider $\frac{d y}{d x}=f(x)$ with $y=5$ when $x=1$. The graph of $\frac{d y}{d x}=f(x)$ for $x \in[1,6]$ is shown below.
The areas of the regions (shaded) bounded by the curve, the x-axis, $x=1$ and $x=6$ are indicated in the graph.

a. Evaluate $\int_{1}^{6} f(x) d x$.

1 mark
b. Find y when $x=6$.
\qquad

Question 9

A sign is erected in the street which runs in the north-south direction. The displacement (m) of a cyclist from the sign as a function of time (s) is shown in the following graph. A positive displacement indicates a displacement to the north.

a. State the direction of motion of the cyclist at time $t=120 \mathrm{~s}$.
b. Calculate the average speed (in $\mathrm{m} \mathrm{s}^{-1}$) of the pedestrian between $t=0$ and $t=160 \mathrm{~s}$.

The velocity-time graph of a car is shown below. The car starts at 500 metres north of the street sign.

c. State the direction of motion of the car at $t=120 \mathrm{~s}$.
d. Calculate the average speed (in $\mathrm{km} \mathrm{h}^{-1}$) of the car between $t=0$ and $t=160 \mathrm{~s}$.
\qquad
\qquad
e. How many times does the car pass the cyclist between $t=0$ and $t=160 \mathrm{~s}$?
\qquad

Question 10

A 1.9 kg parcel is attached to a frictionless 0.1 kg pulley. A cable of negligible mass is fastened to a garage ceiling and wall. The pulley is allowed to run along the cable until it comes to a stop as shown in the drawing below. Take $g=10 \mathrm{~N} \mathrm{~kg}^{-1}$. Assume the pulley is a point mass.

a. Calculate the exact value in newtons of the tension in the cable.
\qquad
\qquad
\qquad

Now a horizontal force of F newtons is used to pull the pulley to the left until the section of the cable on the right is horizontal.
b. Calculate the exact value of F.
\qquad
\qquad
\qquad

End of Exam 1

