\#.
 請
 葛
 "
 90%

Dralime al home tutors negistered business name: itute ABN: 96297924083

Mathemntical Methods

2022

Trial Examination I (I hour)

Instructions

Answer all questions.
A decimal approximation will not be accepted if an exact answer is required to a question. In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this exam are not drawn to scale.
Question 1 (3 marks)
Solve the following simultaneous equations for x, y and z in terms of a parameter.
Let the parameter be α.
$x-\frac{3}{2} y+z=0$
$2 x-z-3=0$

Question 2 (4 marks)
Given $P(x)=6 x^{4}+\frac{1}{2} x^{2}+1=(2 x+1) Q(x)+R$ where $Q(x)$ is a polynomial function and R is a real constant.
a. Find $Q(x)$ and R.
b. Find the remainder when $(2 x+1) Q(x)$ is divided by $2 x-1$.

Question 3 (4 marks)
The graph of a logarithmic function of equation in the form $y=a \log _{e}(b x-c)$ is shown below. It has an asymptote $x=1.5$ and intercept $(2,0)$.

a. Show that $b=2$ and $c=3$.

2 marks
b. Given $e \approx 2.7$.

Use the graph to determine the approximate value of a corrected to the nearest whole number.

Question 4 (4 marks)
Function f has equation $y=f(x)$.
State a sequence of four transformations of function f, changing $y=f(x)$ to $y=\frac{1}{2} f(1-2 x)$.

Question 5 (5 marks)
Consider $f(x)=\sqrt{x+1}+1, x \in[1, \infty)$ and $g(x)=4 x-x^{2}, x \in[p, q]$.
a. Find the minimum value of p and the maximum value of q such that composite function $f(g(x))$ is defined.
b. Find x such that the gradient of the tangent to $y=f(g(x))$ is $-\frac{1}{2}$. 2 marks

Question 6 (4 marks)
The temperatures of Room A and Room B at time t (hours) are given by $T_{\mathrm{A}}=25+2 \cos \left(\frac{\pi}{12} t\right)$ and $T_{\mathrm{B}}=25-2 \sin \left(\frac{\pi}{12} t\right)$ respectively for $t \geq 0$.
a. For how long is $T_{\mathrm{A}} \geq T_{\mathrm{B}}$ in the first 24 hours?

1 mark
b. Find t such that $T_{\mathrm{A}}=T_{\mathrm{B}}, \frac{d T_{\mathrm{A}}}{d t}>0$ and $\frac{d T_{\mathrm{B}}}{d t}<0$ for the first time.

3 marks

Question 7 (4 marks)
Random variable X has a binomial probability distribution given by $\operatorname{Bi}\left(n, \frac{1}{3}\right)$.
a. Find the greatest value of n such that $\operatorname{Pr}(X<2)>\frac{20}{27}$.
b. Find \bar{X} when $n=33$.

Question 8 (4 marks)
Random variable X has probability density function $f(x)$ given by

$$
f(x)=\left\{\begin{array}{cc}
k e^{\left(\frac{x}{e}+1\right)} & \text { for } 0 \leq x \leq e \\
0 & \text { elsewhere }
\end{array}\right.
$$

a. Show that $k=\frac{1}{e-1}$.

2 marks
b. Find the median of X.

2 marks

Question 9 (8 marks)

Let $f(x)=\frac{2 x-1}{1-x}$.
a. $f(x)$ can be expressed as in the form $\frac{a}{x-1}+b$.

Find the value of each of a and b. Hence sketch the graph of $y=f(x)$.

b. Determine $f^{-1}(x)$.
c. Find the coordinates of the intersections of $y=f(x)$ and $y=f^{-1}(x)$.

1 mark
d. Find the area of the region enclosed by $y=f(x)$ and $y=f^{-1}(x)$.

Express your answer in simplest form.

