

Specialist Mathematies

2022

Trial Examination I (I hour)

Instructions

Answer all questions. Do not use calculators.
Unless otherwise specified, an exact answer is required to a question.
Unless otherwise indicated, the diagrams in this exam are not drawn to scale.
In questions where more than one mark is available, show appropriate working or explanation.
Take the acceleration due to gravity to have magnitude $g \mathrm{~m} \mathrm{~s}^{-2}$, where $g=9.8$
Question 1 (5 marks)
The distribution of the height X of the Victorian year 12 students in a random sample of 100 is approximately normal.
a. Given that $\operatorname{Pr}(X<154.4) \approx 0.025$ and $\operatorname{Pr}(X>193.6) \approx 0.025$, show that the mean and standard deviation of the heights (cm) of students in the sample are 174 and 10 respectively.
b. 60 students in the sample has a mean height of 170 cm . Find the mean height of the remaining students in the random sample.
c. Find an approximate 95% confident interval of the mean height of the Victorian year 12 students.

2 marks

Question 2 (4 marks)
Solve the following equations for x over C.
a. $x^{4}+3 x^{2}-4=0$.

2 marks
b. $x^{4}+3 x^{2}+4=0$.

2 marks

Question 3 (4 marks)
The graphs of $y=\log _{e} x$ and $y=e^{x}$ are shown below. The area of the shaded region is given by $\int_{2}^{3} \log _{e} x d x$.

a. Show that $\int_{0}^{\log _{e} 3} e^{x} d x-\int_{0}^{\log _{e} 2} e^{x} d x=1$.
b. Hence evaluate $\int_{2}^{3} \log _{e} x d x$.

Question 4 (3 marks)
a. On the grid diagram below sketch the graph of $f(x)=\cos ^{-1}|x|$. Show axis intercepts.

b. Find the area of the region bounded by $f(x)=\cos ^{-1}|x|$ and the x-axis.

Question 5 (4 marks)
Two complex numbers, z_{1} and z_{2}, are shown in the following diagram.

Mark accurately (correct modulus and argument) with a dot and label each one of the following four complex numbers on the above diagram.
a. $z_{3}=-i z_{1}$
b. $z_{4}=z_{1}-z_{2}$
c. $z_{5}=4 z_{1} \bar{z}_{2}$
d. $z_{6}=\frac{-z_{1}}{z_{2}}$

Question 6 (5 marks)
a. Given $\int_{0}^{\pi} \sin ^{-1}\left(\frac{x}{\pi}\right) d x=\frac{\pi}{2}(\pi-2)$, and $(0,2 \pi)$ is a point on the solution curve of differential equation $\frac{d y}{d x}=2 \sin ^{-1}\left(\frac{x}{\pi}\right)$, find y when $x=\pi$.
b. Find $\frac{d}{d x}\left(\frac{x}{\pi} \sin ^{-1}\left(\frac{x}{\pi}\right)+\sqrt{1-\left(\frac{x}{\pi}\right)^{2}}\right)$ and express your answer in simplest form.

Question 7 (5 marks)

The diagram above shows three position vectors $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$. Points A, B and C are collinear, $\frac{\overrightarrow{O A} \cdot \overrightarrow{O B}}{|\overrightarrow{O B}|}=\frac{\overrightarrow{O C} \cdot \overrightarrow{O B}}{|\overrightarrow{O B}|}$ and Q is a point on $A C$ such that $A Q=Q C=O Q$.
a. Show that line segments $O B$ and $A C$ are perpendicular.
b. Show that $\overrightarrow{O A}$ and $\overrightarrow{O C}$ are perpendicular.

Question 8 (5 marks)

The unrealistic velocity-time graphs of a police car and a truck along a straight road are shown above.
Velocity is in metres per second, and time t is in seconds.
The truck passes a post office at $t=0$ at constant velocity $25 \mathrm{~m} \mathrm{~s}^{-1}$, and it passes the stationary police car at $t=5$. The police starts to chase at $t=5$. The maximum speed of the police car is $30 \mathrm{~m} \mathrm{~s}^{-1}$.
Read the graphs for other relevant information.
a. What is the distance of the police car (m) from the post office at $t=5$.
b. Find the distance the police car is ahead of the truck when both stop at $t=25$.
c. Write a piecewise function $D(t)$ giving the distance travelled by the police car at time t in the time interval [5, 25].

Question 9 (5 marks)

Two forces (in newtons), $\vec{F}_{1}=20 \mathrm{~N} 30^{\circ} \mathrm{E}$ and $\vec{F}_{2}=15 \mathrm{~S} 60^{\circ} \mathrm{E}$, act on a $2-\mathrm{kg}$ particle, and there are no other forces. The particle is initially at rest.
a. Find the magnitude of the resultant force.
b. The direction of the resultant force can be expressed in the form $\mathrm{N}\left(\sin ^{-1}(a)+\sin ^{-1}(b)\right)^{\circ} \mathrm{E}$.

Find the values of a and b where $a<b$.
c. Find the average speed of the particle in the first 5 seconds.

End of Exam 1

