

Draline af home tutors negistered business nume: itute Amv: 96297924 og:3

Specialist Mathematics

2022

Trial Examination 2
 (2 hours)

SECTION A Multiple-choice questions

Instructions for Section A

Answer all questions.
Choose the response that is correct for the question.
A correct answer scores 1, an incorrect answer scores 0 .
Marks will not be deducted for incorrect answers.
No marks will be given if more than one answer is completed for any question.
Unless otherwise indicated, the diagrams in this exam are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~m} \mathrm{~s}^{-2}$, where $g=9.8$
Question $1 \int_{0}^{\frac{1}{a}} \frac{1}{\pi} \cos ^{-1}(a x) d x=$
A. $\frac{a}{\pi}$
B. $\frac{\pi}{a}$
C. $\frac{1}{a \pi}$
D. $\frac{2}{a \pi}$
E. $\frac{a \pi}{4}$

Question 2 Given vectors $a \tilde{i}+b \tilde{j}$ and $c \tilde{j}+d \tilde{k}$ make 60° angle, then $3 b^{2} c^{2}=$
A. $c^{2} a^{2}+a^{2} d^{2}+d^{2} b^{2}$
B. $c^{2} a^{2}-a^{2} d^{2}+d^{2} b^{2}$
C. $c^{2} a^{2}+a^{2} d^{2}-d^{2} b^{2}$
D. $c^{2} a^{2}-a^{2} d^{2}-d^{2} b^{2}$
E. $-c^{2} a^{2}+a^{2} d^{2}+d^{2} b^{2}$

Question 3 A $0.01-\mathrm{kg}$ particle is projected at $5.0 \mathrm{~m} \mathrm{~s}^{-1}$ vertically upwards. The distance (m) travelled in the time interval $[0.25,0.75]$ in seconds is closest to
A. 0.3
B. 0.6
C. 0.9
D. 1.2
E. 1.5

Question 4 Let $z=\operatorname{cis}\left(\frac{(n+3) \pi}{11}\right)$ and $\operatorname{Arg}\left(z^{k}\right)=\operatorname{Arg}(z)$ where $n, k \in Z^{+} \backslash\{1\}$, the smallest value of k is
A. 6
B. 5
C. 4
D. 3
E. 2

Question 5 A particle is in equilibrium when acted on by three coplanar forces \vec{F}_{1}, \vec{F}_{2} and \vec{F}_{3}.
The angle between \vec{F}_{1} and \vec{F}_{2}, and the angle between \vec{F}_{2} and \vec{F}_{3} are 135° and 105° respectively.
The value of $\frac{\left|\overrightarrow{F_{3}}\right|}{\left|\overrightarrow{F_{2}}\right|}$ is closest to
A. 2.01
B. 1.90
C. 1.64
D. 1.08
E. 0.82

Question 6 Vector $\tilde{c}=p \tilde{i}+q \widetilde{j}+r \tilde{k}$ is linearly independent of $\tilde{a}=\tilde{i}-\tilde{j}$ and $\tilde{b}=\tilde{j}+\tilde{k}$ for $p, q, r \in R$, then
A. $p+q=0$ and $q+r=0$
B. $p+r=0$ and $q+r=0$
C. $p+q=0$ and $q-r=0$
D. $p+r=0$ and $q-r=0$
E. $\quad p-r=0$ and $q-r=0$

Question 7 Given $z=x+y i=\operatorname{cis} \theta$ where $\theta=\operatorname{Arg}(z)$, then $z+1=$
A. $\sqrt{\frac{1-y}{2}} \operatorname{cis}(2 \theta)$
B. $\sqrt{\frac{1+x}{2}} \operatorname{cis}(2 \theta)$
C. $\sqrt{2(1+x)} \operatorname{cis}\left(\frac{\theta}{2}\right)$
D. $\sqrt{2(1-y)} \operatorname{cis}\left(\frac{\theta}{2}\right)$
E. $\sqrt{\frac{1+y}{1+x}} \operatorname{cis}\left(\frac{\theta}{2}\right)$

Question 8 The imaginary part of a possible cube root of $z=-i \operatorname{cis}\left(-\frac{\pi}{4}\right)$ is
A. $\frac{\sqrt{3}-1}{2 \sqrt{2}}$
B. $\frac{1-\sqrt{3}}{2 \sqrt{2}}$
C. $\frac{1-\sqrt{2}}{2 \sqrt{3}}$
D. $\frac{\sqrt{2}-1}{2 \sqrt{3}}$
E. $\frac{\sqrt{2}-\sqrt{3}}{2 \sqrt{6}}$

Question $9 f(x)$ is an odd function and $f(-1)<0$. A possible graph showing $y=f(-|x|)$ is
A.

B.

C.

D.

E.

Question 10 Let $a, b \in R^{+}, z_{1}=-a+b i$ and $z_{2}=b+a i, \frac{z_{1}}{i z_{2}}=$
A. 1
B. 0.5
C. i
D. $0.5 i$
E. $1-i$

Question 11 Point $\left(\frac{\pi}{2}, 0\right)$ is on the curve defined by $\frac{d y}{d x}=\frac{\sin (x)}{\cos (y)}$. The curve is given by
A. $\quad \sin (y)-\cos (x)=0$
B. $\sin (y)+\cos (x)=0$
C. $\quad \sin (y) \cos (x)=0$
D. $\sin (y)-\cos (x)=0, x \in R \backslash\{0, \pm \pi, \pm 2 \pi, \pm 3 \pi, \cdots\}$
E. $\quad \sin (y)+\cos (x)=0, x \in R \backslash\{0, \pm \pi, \pm 2 \pi, \pm 3 \pi, \cdots\}$

Question 12 A particle has position vector given by $\tilde{r}(t)=\cos ^{-1}(t) \tilde{i}+\sin ^{-1}(t) \tilde{j}, t \in[-1,1]$.
The distance travelled by the particle in the interval $[-1,1]$ is closest to
A. 6
B. $\sqrt{3} \pi$
C. 5
D. $\sqrt{2} \pi$
E. 4

Question 13 A particle moves in a straight line and its position is given by x.
It starts from rest at $x=-1$ and accelerates at $-\sqrt{v^{2}+1}$ where v is its velocity. Its velocity at $x=2$ is
A. $-\sqrt{5}$
B. $\sqrt{5}$
C. $-\sqrt{3}$
D. $\sqrt{3}$
E. undefined

Question 14 The scalar resolute of $-\tilde{i}+2 \tilde{j}$ in the direction of $2 \tilde{i}-\tilde{j}+2 \tilde{k}$ is
A. -4
B. 4
C. $-\frac{4}{3}$
D. $\frac{4}{3}$
E. undefined

Question 15 Given $\frac{d y}{d x}=f(x)$. The value of $\int_{1}^{1.01} f(x) d x$ is closest to
A. $0.01 f(1)$
B. $0.01 f(1.01)$
C. $1.01 f(1.01)$
D. $1.01 f(1)$
E. $1.01 f(0.99)$

Question 16 Given $-1<\tan x<0$, which one of the following statements cannot be true?
A. $\tan ^{2} \frac{x}{2}<1+2 \tan \frac{x}{2}<1$
B. $1-\sqrt{2}<\tan \frac{x}{2}<0$
C. $0<\tan \frac{x}{2}<1+\sqrt{2}$
D. $\tan \frac{x}{2}>1+\sqrt{2}$
E. $\tan \frac{x}{2}$ can have a positive or negative value

Question 17 The curve $x^{2}+(y-1)^{2}=1$ for $y \geq 1$ is rotated about the x-axis.
The volume of the solid of revolution formed is V where
A. $\quad V=\frac{4 \pi}{3}\left[1-\left(\sqrt{1-x^{2}}\right)^{3}\right]_{-1}^{1}$
B. $\quad V=\frac{4 \pi}{3}\left[1+\left(\sqrt{1-x^{2}}\right)^{3}\right]_{-1}^{1}$
C. $\quad V=\frac{8 \pi}{3}\left[\left(1+\sqrt{1-x^{2}}\right)^{3}\right]_{0}^{1}$
D. $\quad V=2 \pi\left(\frac{5}{3}+2 \int_{0}^{1} \sqrt{1-x^{2}} d x\right)$
E. $\quad V=4 \pi\left(\frac{5}{3}+\int_{0}^{1} \sqrt{1-x^{2}} d x\right)$

Question 18 Given random variables X and Y where $Y=2 X-1$, for $a, b \in R^{+}$and $b>a, \mathrm{E}(a X-b Y)$ and $\operatorname{sd}(a X-b Y)$ are respectively
A. $a \mathrm{E}(X)-b \mathrm{E}(Y)$ and $\sqrt{a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)}$
B. $\quad a \mathrm{E}(X)-b \mathrm{E}(Y)$ and $\sqrt{a^{2} \operatorname{Var}(X)-b^{2} \operatorname{Var}(Y)}$
C. $a \mathrm{E}(X)+b \mathrm{E}(Y)$ and $\sqrt{a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)}$
D. $(a-2 b) \mathrm{E}(X)+b$ and $(2 b-a) \operatorname{sd}(X)$
E. $(2 b-a) \mathrm{E}(X)+b$ and $(2 b-a) \operatorname{sd}(X)$

Question 19 Random variable X in a large population is normally distributed.
A random sample of size 100 is taken and an approximate 80% confidence interval for μ of X is calculated to be ($16.8,17.2$).
The sample standard deviation is closest to
A. 0.92
B. 1.09
C. 1.13
D. 1.17
E. 1.55

Question 20 The mean of random variable X of a very large population is 175 .
20 out of 50 random samples of size 100 from the population have their mean values of X greater than 178 . The standard deviation of X is closest to
A. 122
B. 118
C. 105
D. 104
E. 103

SECTION B Extended-answer questions

Instructions for Section B

Answer all questions.
Unless otherwise specified, an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this examination are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~m} \mathrm{~s}^{-2}$, where $g=9.8$
Question 1 (9 marks)
Let $z^{2}=(2+\sqrt{2}) \operatorname{cis}\left(-\frac{3 \pi}{4}\right) \operatorname{cis}\left(-\frac{\pi}{12}\right) \operatorname{cis}\left(\frac{7 \pi}{12}\right)$, and $w=r \operatorname{cis} \theta$ where $r=|w|$ and $\theta=\operatorname{Arg}(w)$.
a. Find r and θ such that $w z \in R^{-}$and $|w z|=\sqrt{2}$.
b. Find z in $a+b i$ form.
c. $0+0 i$ is a member of the set complex numbers $v=x+y i$ equidistant from z^{2}.

Show that the other members satisfy $\frac{x^{2}+y^{2}}{2(x+y)}=1+\sqrt{2}$.

Question 2 (16 marks)

At time $t(\mathrm{~min})$, the amount of salt in the vat is Q grams.
The vat has 10 litres of solution containing 1 gram of salt initially $(t=0)$.
At time t, a solution of salt concentration $k Q$ grams per litre runs into the vat at $\frac{20}{10+t}$ litres per min, $k \in R^{+}$.
The mixture is stirred and drained at 1 litre per min.
a. State the rate of inflow of salt into the vat at time t in terms of k, t and Q. Include units.
b. Show that the salt concentration in the vat at time t is $\frac{(10+t) Q}{100+20 t-t^{2}}$. Include units.
c. State the rate of outflow of salt from the vat at time t in terms of t and Q. Include units.
d. Write a differential equation for the rate of change of the amount of salt in the vat. Include units.
e. State the time interval that your equation in part d is valid correct to the nearest min.
f. Given $100+20 t-t^{2}=(\alpha-t)(\beta+t), \alpha, \beta \in R^{+}$, show (NOT verify) that $\alpha=10 \sqrt{2}+10$ and $\beta=10 \sqrt{2}-10$.
g. Show that $\frac{10+t}{100+20 t-t^{2}}=\frac{A}{10 \sqrt{2}+10-t}+\frac{B}{10 \sqrt{2}-10+t}$ where $A=\frac{\sqrt{2}+1}{2}$ and $B=\frac{\sqrt{2}-1}{2}$. $\quad 2$ marks
h. Solve the differential equation in part d to show
$\log _{e} Q=20 k \log _{e}\left(\frac{10+t}{10}\right)+\frac{\sqrt{2}+1}{2} \log _{e}\left(\frac{10 \sqrt{2}+10-t}{10 \sqrt{2}+10}\right)-\frac{\sqrt{2}-1}{2} \log _{e}\left(\frac{10 \sqrt{2}-10+t}{10 \sqrt{2}-10}\right)$ for $0 \leq t \leq 24 . \quad 4$ marks
i. Find the value of k (correct to 2 decimal places) such that $Q \approx 0.5639$ at $t=15$, and the time (correct to the nearest min) when the amount of salt in the vat decreases at maximum rate.

Question 3 (14 marks)

The positions of Particle A and Particle B at time $t \geq 0$ is given by $\tilde{r}_{A}(t)=(\sin t) \tilde{i}+(2 \cos t) \tilde{j}$ and $\widetilde{r}_{B}(t)=(1+\sin t) \tilde{i}+(\cos t) \tilde{j}$ respectively.
\tilde{i} points in the positive x-direction and \tilde{j} in the positive y-direction.
a. Determine the Cartesian equation of the path for each particle.
b. Sketch the paths of the particles on the Cartesian plane shown below. Label each path with A or B. Dot the initial position of each particle. Draw arrow on the path to show the direction of each particle's motion.

c. Find the minimum time required for each particle to return to its initial position.

1 mark
d. Show that the distance D separating the two particles is $D=\sqrt{1+\cos ^{2} t}$ at time t.

Let $n=0,1,2,3, \cdots$.
e. Determine the shortest distance and the longest distance between the two particles, and the times (in terms of n) when they occur.

Abstract

f. Find the velocity of each particle in terms of t.

Hence, express the time in terms of n when the particles move in the same direction.

g. Let θ be the angle between the two velocity vectors. Express $\cos \theta$ in terms of $\sin t$.

Find the largest angle (in radian correct to 2 decimal places) between the two velocity vectors.

Question 4 (12 marks)
A 1 kg particle is projected up an inclined plane at time $t=0$ and its velocity is $v=V_{0}$ at position $x=0$. x is measured along the plane.
The angle between the inclined plane and the horizontal is 30°.
It experiences a resistive force of $k v^{2}$ where k is a real constant.
The force of friction between the particle and the inclined plane is 1 newton.
Time is measured in seconds, length in metres and force in newtons.
a. Draw a labeled diagram showing the forces pointing in the correct direction and their magnitude (newtons) on the particle during its upward motion at time t.

b. Write down the equation of motion for the upward motion of the particle on the plane.

1 mark
c. Find the relation between x and v by solving a differential equation for the motion of the particle on the plane, and the maximum displacement from $x=0$ reached by the particle in terms of k and V_{0}.
d. Find the time taken by the particle to reach its maximum displacement from $x=0$ in terms of k and V_{0}.

2 marks

The particle experiences the same resistive force during its motion down the inclined plane.
Take $t=0$ when the particle starts to slide down the plane.
e. Find the relation between t and v by solving a differential equation for the downward motion of the particle, and the terminal velocity reached by the particle in terms of k.

Question 5 (9 marks)
Correct answers to 3 significant figures unless stated otherwise.
Nails are made by two machines, Machine A and Machine B, in a factory.
The length $X \mathrm{~cm}$ of a nail from each machine has a normal distribution.
Machine A produces nails of mean length 5.22 cm and standard deviation of 0.150 cm .
Machine B produces nails of mean length 5.40 cm and the same standard deviation of 0.150 cm .
Machine A produces twice as many nails as Machine B daily.
a. Show that the mean length and standard deviation of the nails produced by the factory in a day are 5.28 and 0.1118 cm respectively.
b. Calculate the probability that a nail produced by the factory in a day is longer than 5.30 cm .

1 mark

50 random samples of size 100 are taken from the nails produced by the factory in a day.
c. How many (to the nearest unit) samples have a mean length shorter than 5.27 cm ?

1 mark
d. Given that $\operatorname{Pr}(5.28-a<\bar{X}<5.28+a)=0.90$, find the value of a, correct to 2 decimal places.

A new machine, Machine C, is installed in the factory. It produces a large number of nails in a day. It is calibrated and expected to produce nails of mean length 5.30 cm .
The length $X \mathrm{~cm}$ of a nail from Machine C has a normal distribution.
A random sample of 10 nails from Machine C is taken, and the length (cm) of each nail is measured:
$5.31,5.33,5.28,5.32,5.30,5.32,5.33,5.30,5.32,5.30$
e. Find the mean length and standard deviation of the nails in the sample.
f. Determine the approximate 95% confidence interval for the mean length of the nails produced by Machine C in a day.

End of Exam 2

