

Draline al home tutors negistered business name: itute anv: 96297924083

2021

Mathematical

 Methods Year 12
Modelling Task

Time allowed: $\mathbf{2}$ hours plus

Modelling Task

Theme: Ocean waves
Ocean waves change shape as they travel towards shore. The waves break when they are close to shore. Two photographs of breaking waves are shown below.

Emiliano-Arano

Malibu Makos Surf Club

Assumed knowledge: Relations and functions, sine and cosine functions, transformations, simultaneous equations, calculus, gradient, area and volume, definite integral, graphs, CAS

Information/specification:

The following graph (NOT drawn to scale) shows the cross-section of surface ocean waves approacing shore at a particular moment. The graph is divided into sections A, B and C.

In Section A, Waves 1 and 2 are identical. They are furthest from shore.
In Section B, Wave 4 is the transformation of Wave 3 under a dilation from the x-axis.
In Section C, Waves 5 and 6 are breaking waves. Their cross-sections are different.
All length (distance) measurements are in metres, area in square metres, and volume in cubic metres. Correct your answers to two decimal places unless stated otherwise.

Part I (70 minutes plus)

a. The height of Waves 1 and 2 in Section A above the x-axis is 2.20 m . The lowest points touch the x-axis.

Two cycles of $y=a \cos (b x)+c$ are used to model the wave outline (at and above the x-axis) in Section A.

Find the values of a, b and $c \in R$. State the domain of $y=a \cos (b x)+c$.
b. $y=\alpha \sin (\beta x+\gamma)+c$ can also be used to model the wave outline in Section A. Find the values of α, β and $\gamma \in R$.
c. Determine the area enclosed by the wave outline in $\operatorname{Section} A$ and the x-axis.
$(10,0),(15.75,0)$ and $(21.5,0)$ are the lowest points (turning points) of Waves 3 and 4 in Section B, whilst $(13.35,2.7)$ and $(19.1,3.7)$ are the highest points (turning points).
d. Cubic polynomial $y=p x^{3}+q x^{2}+r x+s$ is used to model the outline of Wave 3 from $(10,0)$ to $(13.35,2.7)$.

Set up and solve four simultaneous equations for coefficients p, q, r and $s \in R$ to show that $p \approx-0.143635, q \approx 5.0308, r \approx-57.5257$ and $s \approx 215.8111$.

The equation of the outline of Wave 3 from $(13.35,2.7)$ to $(15.75,0)$ is obtained by three transformations (stated below) of equation
$y=-0.143635 x^{3}+5.0308 x^{2}-57.5257 x+215.8111$.
Transformation 1: Reflection in the y-axis.
Transformation 2: Dilation from the y-axis by a factor of k.
Transformation 3: Translation of u units in the positive x-direction.
e. Write down the transformed equation of $y=-0.143635 x^{3}+5.0308 x^{2}-57.5257 x+215.8111$ after Transformation 1 .
f. Investigate the effects on the modelling curve when the number of decimal places of the coefficient of x^{3} is reduced.
g. Show that the dilation factor k in Transformation 2 is $\frac{48}{67}$.
h. Show that $u \approx 22.9142$ in Transformation 3 .
i. Show that, after applying Transformation 1, Transformation 2 and Transformation 3 to $y=-0.143635 x^{3}+5.0308 x^{2}-57.5257 x+215.8111$, the transformed equation is $y \approx 0.390626(x-22.9142)^{3}+9.8018(x-22.9142)^{2}+80.2963(x-22.9142)+215.8111$
j. Verify that $y=-0.143635 x^{3}+5.0308 x^{2}-57.5257 x+215.8111$ and $y \approx 0.390626(x-22.9142)^{3}+9.8018(x-22.9142)^{2}+80.2963(x-22.9142)+215.8111$ are joined smoothly, correct to 2 decimal places.
k. The equation of the outline of Wave 3 is $y=f(x)$.

Express $f(x)$ as a piecewise function with the coefficients of x^{3} corrected to 6 decimal places and the other coefficients to 4 decimal places.

1. Determine the greatest positive gradient of the outline of Wave 3 .

Hence determine the greatest negative gradient of the outline of Wave 3.
(Clarification: As an example, the greatest among the negative gradients $-1.5,-3.8$ and -2.6 is -3.8)
m . Determine the cross-sectional area of Wave 3 above the x-axis.
Hence find the volume of water of Wave 3 above the x-axis for two metres of the wave, assuming uniform cross-section throughout the two metres.

End of Part I

Information/specification:

The following graph (NOT drawn to scale) shows the cross-section of surface ocean waves approacing shore at a particular moment. The graph is divided into sections A, B and C.

In Section A, Waves 1 and 2 are identical. They are furthest from shore.
In Section B, Wave 4 is the transformation of Wave 3 under a dilation from the x-axis.
In Section C, Waves 5 and 6 are breaking waves. Their cross-sections are different.
All length (distance) measurements are in metres, area in square metres, and volume in cubic metres. Correct your answers to two decimal places unless stated otherwise.

Part II (70 minutes plus)

The surface of Wave 3 in Section B is modelled by
$y=-0.143635 x^{3}+5.0308 x^{2}-57.5257 x+215.8111$ and
$y \approx 0.390626(x-22.9142)^{3}+9.8018(x-22.9142)^{2}+80.2963(x-22.9142)+215.8111$.
$(10,0),(15.75,0)$ and $(21.5,0)$ are the lowest points (turning points) of Waves 3 and 4, whilst $(13.35,2.7)$ and $(19.1,3.7)$ are the highest points (turning points).

Wave 4 is the transformation of Wave 3 under a dilation by a factor of h from the x-axis, and then a translation of w units in the positive x-direction.
a. Show that $h \approx 1.3704$ and $w=5.75$.
b. Wave 4 has equation $y=f(x)$. Express $f(x)$ as a piece-wise function with the coefficient of x^{3} corrected to 6 decimal places and the other coefficients to 4 decimal places.
c. Determine the value of each of the following ratios.
(Clarification: As an example, the greatest among the negative gradients $-1.5,-3.8$ and -2.6 is -3.8)

Ratio 1: greatest positive gradient of the surface of Wave 4 greatest positive gradient of the surface of Wave 3

Ratio 2: $\frac{\text { greatest negative gradient of the surface of Wave } 4}{\text { greatest positive gradient of the surface of Wave } 3}$
d. Determine the value of the ratio $\frac{\text { cross - sectional area above the } x \text {-axis of Wave } 4}{\text { cross - sectional area above the } x \text {-axis of Wave } 3}$.

Now consider Wave 5, $21.5 \leq x \leq 28.1$.
The upper outline of Wave 5 in Section C is modelled by the quartic equation $y=0.0278518 x^{4}-2.7587 x^{3}+101.9787 x^{2}-1666.6577 x+10159.2199$, and the lower outline is modelled by an arc of the circle $(x-28.10)^{2}+(y-R)^{2}=R^{2}$ with radius R. The tip of Wave 5 is the point $(27.10,4.00)$ where the quartic curve and the circular arc intersect.
e. Show that the radius $R=2.125$.
f. Determine the domain of the circular arc modelling the lower ouline of Wave 5.
g. Sketch Wave 5 (upper and lower outlines) in the following grid.

Show coordinates (correct to 2 decimal places) of typical points which specify Wave 5 .

Consider Wave 6 in Section C.
Information about the upper outline of Wave 6:
$(28.1,0)$ and $(33.1,6)$ are turning points.
$(35.1,3.3)$ is the tip of the wave.
h. Using only turning points $(28.1,0)$ and $(33.1,6)$, a student models the upper outline of Wave 6 with equation $y=-3 \cos (n(x-28.1))+3$ where $n \approx 0.6283$.
Explain and show workings in finding $n \approx 0.6283$.
i. Show that curve $y \approx-3 \cos (0.6283(x-28.1))+3$ does not end at the tip of the wave (35.1, 3.3).
j. Instead of using the pair of turning points $(28.1,0)$ and $(33.1,6)$, the student makes a slight change of the second turning point from $(33.1,6)$ to $(\tau, 6)$, then use $(28.1,0)$ and $(\tau, 6)$ to work out an alternative model $y=-3 \cos (\eta(x-28.1))+3$ which ends at the tip of the wave (35.1, 3.3).
Determine the values of η and τ, correct to 4 decimal places.
k. Discuss the limitations of using cosine function such as $y=-3 \cos (n(x-28.1))+3$ to model the upper outline of Wave 6.

1. Choose a polynomial function to model the upper outline of Wave 6 , which could satisfy the requirements that $(28.1,0)$ and $(33.1,6)$ are turning points, and $(35.1,3.3)$ is the tip of the wave. Give reasons to support your choice.

End of Part II

End of Modelling Task

