"

Draline at home tutors negistered husiness nameiture anv: 96297924083

2024
 Specialist
 Mathematics

Year 12
 Application Task
 (Time allowed: 4 hours plus)

Theme: Investigate simple rational functions of a real variable and key features of their graphs

Assumed knowledge: Algebra, functions and graphs, parameters, calculus and CAS
Requirements: For each function/graph, identify maximal domain/range, and key features such as axis intercepts, asymptotes, stationary points, points of inflection and symmetry.
Specify/label key features with coordinates/equations.
Draw neat graphs and scale each axis appropriately to show the key features clearly.

Part I (80 min plus)

Consider the function with rule $f(x)=\frac{1}{x^{3}-1}$.
a. By hand find the first and second derivatives of $f(x)$.
b. Identify the key features of $f(x)$.
c. Hence draw the graph of $f(x)$ and label its key features.

Consider the function with rule $h(x)=\frac{1}{x^{3}+1}$.
d. Analyse $h(x)$ by repeating parts a, b and c .

Study the graphs of $f(x)$ and $h(x)$.
e. Statement: $f(x)$ and $h(x)$ show symmetry under certain transformations.

Discuss the meaning of the statement. Demonstrate the statement algebraically.

Consider $f_{n}(x)=\frac{1}{x^{3}-n}$ where $n \in R$.
f. In terms of n specify the key features of $f_{n}(x)$.

A family of functions can be generated by varying the value of parameter n.
g. Systematically choose seven representative and suitable values of parameter n to illustrate the family of curves (show graphs). Label each curve with its n value. Specify/label the key features. Discuss the changes in the key features when the n value changes.

End of Part I

Part II (80 min plus)

Requirements: For each function/graph, identify maximal domain and range, and key features such as axis intercepts, asymptotes, stationary points and points of inflection. Specify key features with coordinates/equations. Draw neat graphs and scale each axis appropriately to show the key features clearly.

Consider $g_{n}(x)=\frac{x}{x^{3}-n}$, where $n \in R$.
a. By hand find the first and second derivatives of $g_{n}(x)$. Identify the key features of $g_{n}(x)$.

Hence draw the graph of $g_{n}(x)$ and specify/label its key features, CAS allowed.

Consider $g_{m}=\frac{x^{m}}{x^{3}-1}$, where m is a positive integer. A family of curves can be generated by varying the value of parameter m.
b. Systematically choose six representative and suitable values of parameter m (even and odd) to illustrate the family of curves (show neat graphs, CAS allowed). Label each curve with its m value. Specify/label the key features. Discuss the changes in the key features when the m value changes.
Comment on the effect of even/odd m on the appearance of the curve.
c. Compare the graphs of $g_{m}=\frac{x^{m}}{x^{3}-1}$ when m is a negative integer with the graphs of $g_{m}=\frac{x^{m}}{x^{3}-1}$ when m is a positive integer as in part c. Illustrate with $m= \pm 2$.

Consider $g_{k}=\frac{x-k}{x^{3}-1}$, where $k \in R$. A family of curves can be generated by varying the value of parameter k. d. Systematically choose seven representative and suitable values of parameter k to illustrate the family of curves (show graphs, CAS allowed). Label each curve with its k value. Specify/label the key features. Discuss the changes in the key features when the k value changes.
e. The graph of $g_{k}=\frac{x-k}{x^{3}-1}$ for a particular value of $k \in R$ separates the family of curves into two groups with distinct appearances. What is that particular value of k ?
Express $g_{k}(x)$ in simplest form for that particular value of k

Part III (80 min plus)

Requirements: For each function/graph, identify maximal domain and range, and key features such as axis intercepts, asymptotes, stationary points and points of inflection. Specify key features with coordinates/equations. Draw neat graphs and scale each axis appropriately to show the key features clearly.
Use similar procedures in Part I and Part II to investigate graphs of the following functions and their families.
Consider $h_{n}(x)=\frac{x^{2}+x+n}{x^{3}-1}$ where $n \in R$.
a. Investigate/analyse the graphs of functions generated by $h_{n}(x)=\frac{x^{2}+x+n}{x^{3}-1}, n \in R$.

Identify two particular values of n which distinguish the graphs of $h_{n}(x)=\frac{x^{2}+x+n}{x^{3}-1}$ from the rest of the family.
Discuss and explain the appearances of the two graphs.

Consider $h_{n, k}(x)=\frac{x^{3}+n}{x^{2}+k}$ where $k, n \in R$.
b. Investigate/analyse the graphs of functions generated by $h_{n, k}(x)=\frac{x^{3}+n}{x^{2}+k}, k, n \in R$.

Hint: Select a suitable value for k whilst the value of n is varied. Select a suitable value for n whilst the value of k is varied.
Identify any particular k or n values of interest.

End of Part III
 End of Task

