202.5
 Specialist Mathematics

Year 12 Application Task
(Time allowed: 4 hours plus)

Application Task

Theme: Locus of a point at a constant distance from a smooth curve

Train tracks are examples of the theme.
Any point on one track (locus) has the same perpendicular distance from the other track (smooth curve).
Assumed knowledge: Coordinate geometry; algebra; functions, relations and graphs; locus of a point; parametric equations; differentiation; length of a curve; CAS

Part I (80 minutes plus) Loci

The following diagram shows a closed curve on a Cartesian plane (a circle of radius 5 units centred at $(0,0)$).

a. On the diagram above sketch two possible loci of a point which is always 1 unit from the circle.
b. Write down the Cartesian equation of each of the two loci.
c. Let A be a point on the given circle, and the x-coordinate of A is p.
B is a point directly opposite to A on the outer locus. Show that the x-coordinate and the y-coordinate of point B are $x=\frac{6 p}{5}$ and $y=\frac{6 \sqrt{25-p^{2}}}{5}$. They are the parametric equations of the locus of B in terms of parameter p.
d. C is a point directly opposite to A on the inner locus. Find the parametric equations of the locus of C in terms of p.
e. Use the parametric equations of the locus of B to verify it is a circle.

Consider a straight line of equation $y=m x+n$ where $m, n \in R \backslash\{0\}$. Choose a suitable value for each of m and n to specify your line. Point E is below your line and it is 1 unit from your line.
f. Find the Cartesian equation of the locus of E.
g. Let D be a point on your line, and its x-coordinate be λ. Determine the parametric equations of the locus of E with λ as the parameter.
h. Use the parametric equations of the locus of E to verify it is the same line found in part f .

In parts a to e, it appears that the locus of a point at a constant perpendicular distance from a circle is a circle; and in parts f to h , the locus of a point at a constant perpendicular distance from a straight line is a straight line.
Is it valid to make the conclusion that the locus of a point at a constant perpendicular distance from a curve, for example an ellipse, is an ellipse?

In the following parts, you are to investigate the validity of the conclusion for an ellipse of the form $\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}=1$ where $\alpha, \beta \in R^{+}$and $\alpha \neq \beta$.
i. Select a suitable value for each of α and β in $\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}=1$.

Using your selected values, sketch ellipses $\varepsilon_{1}: \frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}=1$ and $\varepsilon_{2}: \frac{x^{2}}{(\alpha+1)^{2}}+\frac{y^{2}}{(\beta+1)^{2}}=1$ on the same Cartesian plane.

j. Determine whether ellipse ε_{2} is the locus of a point 1 unit from ellipse ε_{1}.

Hint: Pick a specific convenient point on ellipse ε_{2} away from the axis intercepts. Use calculus methods and by CAS to determine its shortest distance from ellipse ε_{1}. Comment/discuss your findings.

End of Part I

Part II (80 minutes plus) Train tracks

Train tracks are examples of the theme: Locus of a point at a constant distance from a smooth curve Any point on one track (locus) has a constant perpendicular distance from the other track (smooth curve). Standard gauge train tracks are 1.435 m apart. The linear measurements in Part II are in metres (m).

Consider train tracks forming a closed loop. The inner track is an elliptical track given by $\frac{x^{2}}{20^{2}}+\frac{y^{2}}{10^{2}}=1$.
Any point on the outer track is 1.435 m from the inner track.
The following diagram shows an ellipse representing the inner track of the rail loop.

a. $P\left(p, \sqrt{100-\frac{p^{2}}{4}}\right)$ is a point on the inner track, where parameter $p \in R$.

State the possible values of p.
Show that the equation of the normal to the ellipse at point P is $y-\sqrt{100-\frac{p^{2}}{4}}=\frac{4 \sqrt{100-\frac{p^{2}}{4}}}{p}(x-p)$.

The normal at $P\left(p, \sqrt{100-\frac{p^{2}}{4}}\right)$ intersects the outer track at $Q(x, y)$, and it is perpendicular to the tangent to the outer track at $Q(x, y)$.
b. Write an equation in terms of x, y and p to show $Q P=1.435 \mathrm{~m}$.
c. Solve the two equations found in parts a and b to show that $x=p\left(1+\frac{1.435}{\sqrt{1600-3 p^{2}}}\right)$ and $y=\frac{\sqrt{400-p^{2}}}{2}\left(1+\frac{5.74}{\sqrt{1600-3 p^{2}}}\right)$.

The results found in part c are the parametric equations of the locus of Q which is the outer track of the rail loop.
d. Verify that the two tracks are indeed 1.435 m apart by choosing two general points on the inner track, one above and one below the x-axis.
e. Display on your CAS the track (the locus of Q) given by parametric equations $x=p\left(1+\frac{1.435}{\sqrt{1600-3 p^{2}}}\right)$ and $y=\frac{\sqrt{400-p^{2}}}{2}\left(1+\frac{5.74}{\sqrt{1600-3 p^{2}}}\right)$, together with the ellipse given by $\frac{x^{2}}{21.435^{2}}+\frac{y^{2}}{11.435^{2}}=1$.
Compare the two graphs and comment. You are not required to sketch the graphs.

Consider a train track given by exponential function $y=e^{k x}$ where $k \in R^{+}$.
The following diagram shows the graph of a track for a particular k value.

$P\left(p, e^{k p}\right)$ is a point on the track $y=e^{k x}$, where parameter $p \in R$. The other track is below the track shown in the diagram. The two tracks are 1.435 m apart (standard gauge).
f . Choose a suitable value for k and use simular methods employed in parts a, b and c to find the parametric equations of the other track.
g. Verify that the two tracks are indeed 1.435 m apart by choosing two general points on the track $y=e^{k x}$ such that $p<0$ and $p>0$, where k is your chosen value.
h. Calculate the length (m) of the track $y=e^{k x}$ from $p=-10$ to $p=5$, correct to 3 decimal places, where k is your chosen value.
i. Calculate the length (m) of the other track from $p=-10$ to $p=5$, correct to 3 decimal places. Comment on the difference in length of the two tracks.

End of Part II

Part III (80 minutes plus) The longest

A passage is bounded by two parabolas, $y=x^{2}$ and $5(y+2)=(x-1)^{2}$ as shown below. Length is in metres. A rigid thin rod represented by line $P Q$ touching both parabolas is also shown.

$P Q$ is a tangent to the parabola at $\left(p, p^{2}\right)$.
a. Show that $P Q$ has equation $y=2 p x-p^{2}$.
b. Briefly describe the change in distance between P and Q as the value of p decreases.
c. Show that the coordinates of points P and Q in terms of parameter p are:

$$
\begin{aligned}
& P\left(5 p+1+\sqrt{20 p^{2}+10 p+10}, 9 p^{2}+2 p+2 p \sqrt{20 p^{2}+10 p+10}\right) \text { and } \\
& Q\left(5 p+1-\sqrt{20 p^{2}+10 p+10}, 9 p^{2}+2 p-2 p \sqrt{20 p^{2}+10 p+10}\right) .
\end{aligned}
$$

d. Let D be the distance from P to Q. Show that $D^{2}=40\left(2 p^{4}+p^{3}+3 p^{2}+p+1\right)$.
e. Find the longest rod $P Q$ that can move around the bend of the passage, correct answer to 4 decimal places.

Now a rectangular plank lies flat in the passage bounded by two parabolas, $y=x^{2}$ and $5(y+2)=(x-1)^{2}$ as shown below. The plank has a width of 1 m . Corners R and S are in contact with parabola $5(y+2)=(x-1)^{2}$, and the opposite side parallel to $R S$ is a tangent to parabola $y=x^{2}$ at $\left(p, p^{2}\right)$.
A normal to parabola $y=x^{2}$ at $\left(p, p^{2}\right)$ intersects $R S$ at Z.

f. Show that the equation of the normal to parabola $y=x^{2}$ at $\left(p, p^{2}\right)$ is $y=p^{2}+\frac{1}{2}-\frac{x}{2 p}$.
g. Show that the parametric equations of the locus of point Z are $x=p+\frac{2 p}{\sqrt{1+4 p^{2}}}$ and $y=p^{2}-\frac{1}{\sqrt{1+4 p^{2}}}$.
h. Show that the equation of edge $R S$ is $y=2 p x-p^{2}-\sqrt{1+4 p^{2}}$
i. Edge $R S$ intersects parabola $5(y+2)=(x-1)^{2}$ at R and S. Complete the following table showing the coordinates of R and S, and D the length of $R S$, for different values of parameter p.

p	$R(x, y)$	$S(x, y)$	D
-0.35			
-0.30			
-0.25			
-0.20			
-0.15			
-0.10			

j. Use the values in the above table to estimate the length (m) of the longest rectangular plank that can move around the bend of the passage. Additional data from q values of your choice may be used.

