.
 II
 :

Draline dillone tutors negistered business nume: iture anv: 96297924083

202.5
 Specialist Mathematies

Year 12 Problem Solving Task

(Time allonved: 2.0 hours plus)

Problem Solving Task

Theme: Area of a irregular 2-dimensional 3-blade 'propeller'

Information:

Regular

Irregular

In the diagrams above, $A B C$ is an equilateral triangle. The side length is 1 unit.
In the regular propeller, $P Q, P R$, and $P S$ are perpendicular bisectors of sides $A B, B C$, and $C A$ respectively.
In the irregular propeller, P^{\prime} is any point inside equilateral triangle $A B C$.
$P^{\prime} Q, P^{\prime} R$, and $P^{\prime} S$ are perpendicular to sides $A B, B C$, and $C A$ respectively.
In both diagrams of the propellers, the blades are formed with semi-circles.
The semi-circles are the same in the regular propeller, but they are not in the irregular propeller.
The task is to find the area (shaded) of the irregular propeller.
Assumed knowledge: Equilateral triangle; geometry; compound angle formulas; area of a semi-circle; area of a triangle; vectors and vector projections; algebra; CAS

Part I (70 minutes plus)

a. Calculate the area of $\triangle A B C$.
b. Place $\triangle A B C$ on a Cartesian plane such that A is at the origin, B is on the positive x-axis, and C is in the first quadrant of the plane. Unit vectors \tilde{i} and \tilde{j} are in the positive x and y directions respectively. Express $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C A}$ in terms of \tilde{i} and \tilde{j}.
c. Use vector methods to find the area of equilateral $\triangle A B C$.
d. Clearly explain why the area (shaded) of the regular propeller is equal to the area equilateral $\triangle A B C$.
e. Consider any vector \tilde{p} inside $\triangle A B C$ and $|\tilde{p}|=r$ where $r=\frac{1}{2}$. Let the angle between \tilde{p} and $\overrightarrow{A B}$ be θ. Calculate the scalar resolute (scalar projection) of \tilde{p} in the direction of each of $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C A}$.
f. In terms of r, express the scalar resolute of \tilde{p} in the direction of each of $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C A}$.
g. Show that the sum of the scalar resolutes in part e is zero, and that for part f is also zero.
h. Write a general statement for part g.
i. Discuss/explain whether your general statement in part h is true for non-equilateral triangles.

End of Part I

Information given in Part I:

Regular

Irregular

In the diagrams above, $A B C$ is an equilateral triangle. The side length is 1 unit.
In the regular propeller, $P Q, P R$, and $P S$ are perpendicular bisectors of sides $A B, B C$, and $C A$ respectively.
In the irregular propeller, P^{\prime} is any point inside equilateral triangle $A B C$.
$P^{\prime} Q, P^{\prime} R$, and $P^{\prime} S$ are perpendicular to sides $A B, B C$, and $C A$ respectively.
In both diagrams of the propellers, the blades are formed with semi-circles.
The semi-circles are the same in the regular propeller, but they are not in the irregular propeller.
The area (shaded) of the regular propeller is equal to the area equilateral $\triangle A B C$.

Part II (70 minutes plus)

Consider the diagram showing the irregular propeller.
Point P in the following diagram is the same point P as shown in the diagram of the regular propeller, Vector $P P^{\prime}$ is added to the diagram.
Let $A Q=a, Q B=b, B R=c, R C=d, C S=e$ and $S A=f$.
Let $|P P|=r$ and the angle between $\overrightarrow{P P}$ and $\overrightarrow{A B}$ be θ.

a. Let the scalar resolute of $\overrightarrow{P P^{\prime}}$ in the direction of each of $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C A}$ be α, β and γ respectively. Determine α, β and γ in terms of r and θ.
Show that $r \cos \theta+r \cos \left(\theta-\frac{2 \pi}{3}\right)-r \cos \left(\theta-\frac{\pi}{3}\right)=0$ by using compound-angle formulas.
Note: You obtained the same results by using \tilde{i} and \tilde{j} components in Part Ig.
b. Show/explain that $a=\frac{1}{2}+r \cos \theta, b=\frac{1}{2}-r \cos \theta, c=\frac{1}{2}+r \cos \left(\theta-\frac{2 \pi}{3}\right), d=\frac{1}{2}-r \cos \left(\theta-\frac{2 \pi}{3}\right)$, $e=\frac{1}{2}-r \cos \left(\theta-\frac{\pi}{3}\right)$ and $f=\frac{1}{2}+r \cos \left(\theta-\frac{\pi}{3}\right)$
Hence show that $a+c+e=b+d+f=\frac{3}{2}$.
c. Write a statement (in words) expressing the area of the shaded irregular propeller in terms of the areas of the equilateral $\triangle A B C$ and the semi-circles of diameters a, b, c, d, e and f.
d. Following your written statement in part c , write a formula expressing the area of the shaded irregular propeller in terms of a, b, c, d, e and f.
Hence find the area of the shaded irregular propeller.

Three more semi-circles were added to form three drops as shown below.

e. Find the total area of the three drops

Now consider irregular propeller from a non-equilateral triangle.
f. In the diagram below, $\overrightarrow{F G}$ is any vector inside right-angle triangle $A B C$ where $\angle A B C=\frac{\pi}{3}$ and $\angle A C B=\frac{\pi}{6} \cdot \overrightarrow{F G}$ is not parallel to any one of the three sides. Let $|\overrightarrow{F G}|=1$ and the angle between $\overrightarrow{F G}$ and $\overrightarrow{A B}$ be θ.

Select an appropriate value for θ. Determine the sum of the scalar resolutes of $\overrightarrow{F G}$ in the directions of $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C A}$.

g. Compare the results in part a and part f.
h. The following irregular propeller is formed using the right-angle triangle and six semi-circles.

Explain whether the areas of the irregular propeller (shaded) and the right-angle triangle are equal or not. Fully and concisely summarise your findings in Part I and Part II about the areas of an irregular propeller and the triangle used.

End of Part II

