2004 VCAA Further Math Exam 1 Solutions

© Copyright 2004 itute.com

Free download and print from www.itute.com

SECTION A

Core

1	2	3	4	5	6	7	8	9	10
В	В	C	D	C	C	A	A	C	В

11	12	13
Е	A	D

Q1 There are 26 entries in the leaf, .: B

Q2
$$Q_L = 30$$
, $Q_U = 43$, $IQR = 43 - 30 = 13$: B

Q3 95 is 10 (i.e. 2σ) higher than 85 (the mean). The percentage within $\pm 2\sigma$ of the mean is 95%, \therefore 5% is outside $\pm 2\sigma$ of the mean and hence 2.5% is greater than $\mu + 2\sigma$, i.e. 95. \therefore C

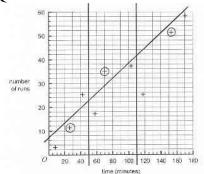
Q4
$$\frac{9+3+1+0+1}{20} \times 100\% = 70\%$$
 :. D

Q5
$$\frac{0 \times 6 + 1 \times 9 + 2 \times 3 + 3 \times 1 + 4 \times 0 + 5 \times 1}{20} = 1.15 \therefore C$$

Q6
$$44 + 9 + 8 = 61$$
 : C

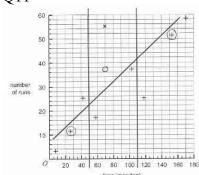
Q7 The 11-12 students who sometimes used = 73 - 47 - 8 = 18

The 7-10 students who sometimes used = 58 - 16 - 18 = 24

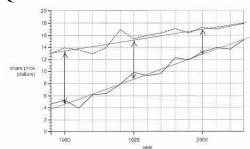

Percentage of 7-10 students who sometimes used

$$= \frac{24}{217} \times 100\% = 11.1\% \therefore A$$

Q8 Slope
$$\approx -\frac{210}{19} \approx -11$$
,


vertical axis intercept ≈ 210 ∴ A

Q9 Coefficient of determination = $r^2 = (-0.9260)^2 = 0.8575$:. C Q10


Slope
$$\approx \frac{57-7}{160-0} \approx 0.31$$
 : B

Q11

The redrawn line has the same slope because (x_L, y_L) and (x_U, y_U) remain the same. \therefore E

Q12

Difference has a decreasing trend. :. A

Q13
$$\frac{actual}{index}$$
 = deseasonalised,
 $actual = index \times deseasonalised = 1.28 \times 28098$
= 35965 \therefore D

SECTION B

Module 1: Number patterns and applications

11200		1 10222	~ - -	successive approactions					
1	2	3	4	5	6	7	8	9	
C	A	В	D	D	Е	D	Е	В	

Q1 Harriet : Joshua : Ali : Total 5 : 3 : 2 : 10

$$\frac{x}{6} = \frac{10}{2}, \ x = 30 \ \therefore C$$

Q2 Geometric sequence. $r = \frac{4.9}{7} = 0.7$,

$$t_4 = t_3 \times r = 4.9 \times 0.7 = 3.43$$
 :. A

Q3 Infinite geometric series, $S_{\infty} = \frac{a}{1-r}$.

$$a = -5.4$$
, $r = \frac{1.8}{-5.4} = -\frac{1}{3}$,

$$S_{\infty} = \frac{-5.4}{1 - \left(-\frac{1}{3}\right)} = -4.05 \therefore B$$

- Q4 Start of 2003, number of goats = 600Start of 2004, number of goats = 600×1.08 Start of 2005, number = $600 \times 1.08 \times 1.08 = 700$ \therefore D
- Q5 Arithmetic sequence, $t_n = a + (n-1)d$. a = 5, d = 2, $t_{12} = 5 + (12-1) \times 2 = 27$.: D
- Q6 Arithmetic series, $S_n = \frac{n}{2} (2a + (n-1)d)$.

For one day each week,

$$S_{20} = \frac{20}{2} (2 \times 5 + (20 - 1) \times 2) = 480$$
.

For seven days each week, total number of laps $= 7 \times 480 = 3360$ \therefore E

Q7
$$w_3 = 4w_2 + 2 = 4 \times 10 + 2 = 42$$

 $w_4 = 4w_3 + 2 = 4 \times 42 + 2 = 170$.: D

Q8 Arithmetic sequence,
$$d = t_{n+1} - t_n = -5$$
, $a = 15$, $t_n = a + (n-1)d = 15 + (n-1)(-5) = 20 - 5n$.: E

Q9 Amount of detergent = $\frac{20}{100} \times 200 = 40 \text{ mL}$

Add V mL of water to the 200 mL of 20% detergent solution to make an 8% detergent solution,

$$\therefore \frac{40}{200+V} \times 100\% = 8\%, \frac{4000}{200+V} = 8$$

$$4000 = 8(200+V), V = 300 \therefore B$$

Module 2: Geometry and trigonometry

1	2	3	4	5	6	7	8	9				
Е	В	C	Е	D	C	A	D	A				

Q1
$$\sin \angle BAC = \frac{16}{25}$$
, $\angle BAC = 40^{\circ}$: E

- Q2 $\angle YXZ = 180 115 27 = 38^{\circ}$, ... XY is north $90 38 = 52^{\circ}$ east. ... B
- Q3 The sine rule, $\frac{XZ}{\sin 115^{\circ}} = \frac{3.2}{\sin 27^{\circ}}$, XZ = 6.4 \therefore C
- Q4 Perimeter of the first $\Delta = 20 + 48 + 52 = 120$ Perimeter of the second $\Delta = \frac{65}{52} \times 120 = 150$.. E
- Q5 Actual area = $6^2 \times 720 = 25920$:. D

Q6
$$ST = \sqrt{30^2 + 105^2}$$

= 109
 \therefore C

- Q7 Average slope = $\frac{rise}{run} = \frac{450 300}{200} = 0.75$:. A
- Q8 $\angle IFH = 35 20 = 15^{\circ}$. The sine rule: $\frac{FH}{\sin 20^{\circ}} = \frac{4}{\sin 15^{\circ}}$, $FH = \frac{4\sin 20^{\circ}}{\sin 15^{\circ}}$.. D

Q9
$$AD = \sqrt{50^2 + 100^2} = 111.8$$
, $\tan \angle ADB = \frac{20}{111.8}$, $\angle ADB = \tan^{-1} \left(\frac{20}{111.8}\right) = 10.1^{\circ}$ \therefore A

Module 3: Graphs and relations

1	2	3	4	5	6	7	8	9	
D	В	Е	С	D	Е	С	В	Α	

Q1
$$1.00 + 0.50 = 1.50$$
 : D

Q2 (2,1) is on the line
$$y = 3x + c$$
, $\therefore 1 = 3 \times 2 + c$
 $\therefore c = -5$ \therefore B

Q3 Horizontal line y = -8 and vertical line x = 12 intersect at (12,-8) \therefore E

Q4 0 to 5, speed =
$$\frac{350}{5}$$
 = 70; 5 to 9, speed = 0;

9 to 12, speed =
$$\frac{250}{3}$$
 = 83.3; 12 to 14, speed = 0;

14 to 16, speed =
$$\frac{100}{2}$$
 = 50 . .. C

Q5
$$350 + 0 + 250 = 600$$
 : D

Q6 Hourly rate =
$$a = \frac{450 - 320}{6 - 4} = 65$$

$$\therefore C = 65x + b$$
, $\therefore 320 = 65 \times 4 + b$, $b = 60$, hence $C = 65x + 60$. For $x = 1$, $C = 125$ \therefore E

Q7 Let the objective function be P = y - 2x + 20.

$$(2.9), P = 9 - 2(2) + 20 = 25$$

$$(4,11)$$
, $P = 11 - 2(4) + 20 = 23$

$$(6,10)$$
, $P=10-2(6)+20=18$

$$(6,1), P=1-2(6)+20=9 : C$$

Q8 The line with a negative slope is $y = -\frac{3}{4}x + 3$,

 $\therefore \text{ the region below it is } y < -\frac{3}{4}x + 3,$

i.e. 3x+4y<12. The line with a positive slope is y=x-1, the region below it is y< x-1, 1< x-y, i.e. x-y>1 .. B

Q9
$$y = kx^3$$
, :.1 = $k(8)$, $k = \frac{1}{8}$, hence $y = \frac{1}{8}x^3$.

At
$$x = 2$$
, $y = 1$. \therefore A

Module 4: Business-related mathematics

1	2	3	4	5	6	7	8	9
В	Е	Е	D	A	В	A	A	D

Q1 Simple interest =
$$37000 \times \frac{4}{100} \times 2 = 2960$$
 : B

Q2
$$R = 1 + \frac{3.5}{100} = 1.035$$
,

$$A = PR^n = 150000(1.035)^6 = 184388.30$$
 : E

Q3 Charge =
$$36 \times \left(1 + \frac{15}{100}\right) \times 2 = 82.80$$
 :: E

Q4 Total cost =
$$500 + 115 \times 24 = 3260$$
 : D

Q5 Interest =
$$3260 - 2700 = 560$$
,
Interest rate $r = \frac{100I}{PT} = \frac{100 \times 560}{2700 \times 2} = 10.4$:. A

Q6 Monthly,
$$R = 1 + \frac{7.4}{100 \times 12} = 1.006167$$
. At the end

of the term,
$$A = 0$$
, $\therefore 0 = PR^n - \frac{Q(R^n - 1)}{R - 1}$,

$$\therefore Q = \frac{PR^{n}(R-1)}{R^{n}-1} = \frac{250000(1.006167)^{240}(0.006167)}{1.006167^{240}-1},$$

$$Q \approx 1999 \therefore B$$

Q7
$$R = 1 + \frac{3.6}{100} = 1.036$$
.

After two years,
$$A = PR^2 = 12000(1.036)^2 = 12879.55$$

During the third year, interest =
$$12879.55 \times \frac{3.6}{100} \times 1$$

$$=463.66$$
 : A

Q8 Due to depreciation the book value decreases and the annual depreciated amount decreases accordingly when the reducing balance method is used. : A

Q9 Monthly interest rate
$$\frac{7.5}{12} = 0.625$$

Total number of repayment = $12 \times 10 = 120$ Fully repaid over 10 years ∴ no money will be owed after 10 years.

$$R = 1 + \frac{0.625}{100} = 1.00625$$

Monthly repayment
$$Q = \frac{PR^n(R-1)}{R^n-1}$$

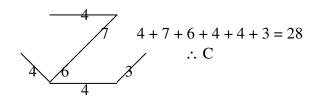
$$=\frac{130000(1.00625)^{120}(0.00625)}{1.00625^{120}-1}=1543.10$$

Amount owing after 5 years $A = PR^n - \frac{Q(R^n - 1)}{R - 1}$

Amount owing after 5 years
$$A = PR - \frac{1}{R} - \frac{1}{R} = 130000(1.00625)^{60} - \frac{1543.12(1.00625^{60} - 1)}{1.00625 - 1}$$

=77010.25

A monthly repayment of 1500 (which is less than 1543.10) will increase the length of the loan. ∴ D


Module 5: Networks and decision mathematics

1	2	3	4	5	6	7	8	9
В	Е	C	A	В	A	Е	D	D

Q1 A subgraph is a subset of the vertices and edges in a graph. : B

Q2 For any two there exists a one-one correspondence between their vertex sets that preserves adjacency. : E

Q4 Without passing through the other towns, one route from *F* to *F*; one route from *F* to *I*; two routes from F to G; two routes from F to H; two routes from G to H; one route from I to H. \therefore A

Q6 A critical path (path of maximum length from start to finish) determines the minimum time required to complete the entire project. :. A

Q7 Use the Hungarian algorithm.

$$\rightarrow \begin{bmatrix}
0 & 3 & 86 & 0 & \textcircled{0} \\
1 & \textcircled{0} & 0 & 0 & 1 \\
91 & 2 & 4 & \textcircled{0} & 2 \\
\textcircled{0} & 0 & 3 & 3 & 89 \\
0 & 91 \textcircled{0} & 1 & 1
\end{bmatrix}$$

$$\therefore E$$

Q8 Critical path is: *Start-B-F-J-L-finish*. Length = 10+6+7+3=26 : D

Q9 The latest start time for E is 2 hours before the earliest start time for F, i.e. 33, because time taken for E is 2 hours.

The earliest start time for E is 22, \therefore time taken for C could be increased by 33 - 22 = 11 hours. \therefore D

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors