## 

## Solutions to the VCAA 2010 Mathematical Methods (CAS) Examination 1 sample questions

(Note: This is a collection of sample questions and not a sample examination)

Free download from www.itute.com © Copyright 2010 itute.com

Q1 
$$x^3 + (k+1)x^2 + kx = 0$$
  
 $x(x^2 + (k+1)x + k) = 0$   
 $x = 0$  or  $x = \frac{-(k+1) \pm \sqrt{(k+1)^2 - 4k}}{2} = \frac{-(k+1) \pm \sqrt{(k-1)^2}}{2}$   
 $= -k$  or  $-1$   
 $\therefore x \in \{-k, -1, 0\}$ 

Q2 Solve 2 = na and a+1 = 3n simultaneously to find a.  $n = \frac{2}{a}, \therefore a+1 = \frac{6}{a}$   $a^2 + a - 6 = 0$  (a+3)(a-2) = 0 a = -3 or 2

Q3 Let (x', y') be the image of the point (x, y) under the transformation defined by  $\begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$ .

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 2x \\ -3y \end{bmatrix}$$
$$\therefore x = \frac{x'}{2} \text{ and } y = -\frac{y'}{3}$$

Equation of the image of  $y = \frac{1}{x}$  is  $-\frac{y'}{3} = \frac{2}{x'}$ 

$$y' = -\frac{6}{x'}$$
 or  $y = -\frac{6}{x}$ 

Sequence of transformations:

- reflection in the *x*-axis
- dilation from the x-axis by a factor of 3
- dilation from the y-axis br a factor of 2

Q4 
$$f(x) = x^4 - x^2 = x^2(x+1)(x-1)$$
  
x-intercepts: -1, 0, 1

$$f'(x) = 4x^3 - 2x = 2x(\sqrt{2}x + 1)(\sqrt{2}x - 1)$$

Stationary points:  $x = -\frac{\sqrt{2}}{2}$ , 0,  $\frac{\sqrt{2}}{2}$ 



The function is strictly decreasing on the intervals  $\left(-\infty, -\frac{\sqrt{2}}{2}\right]$ 

and 
$$\left[0, \frac{\sqrt{2}}{2}\right]$$
.

Note: The answer  $\left(-\infty, -\frac{\sqrt{2}}{2}\right] \cup \left[0, \frac{\sqrt{2}}{2}\right]$  given in the original

VCAA document is different from the answer above.

The function is **not** strictly decreasing on the set

$$\left(-\infty, -\frac{\sqrt{2}}{2}\right] \cup \left[0, \frac{\sqrt{2}}{2}\right]$$
 because  $a < b$  does not imply

f(a) > f(b) for some a and b in the set, e.g. when a = -0.9 and b = 0, f(a) < f(b).

Q5 
$$\sin(x) + \cos(x) = 0$$
  

$$\frac{1}{\cos(x)} (\sin(x) + \cos(x)) = 0, \text{ where } \cos(x) \neq 0$$

$$\frac{\sin(x)}{\cos(x)} + 1 = 0$$

$$\tan(x) = -1$$

$$\therefore x = \frac{3\pi}{4} + n\pi, \text{ where } n \in Z$$

Q6  

$$mx+12y=12$$
  
 $3x+my=m$   
 $\therefore y=-\frac{m}{12}x+1$  and  $y=-\frac{3}{m}x+1$  have  
(i) a unique solution when  $-\frac{m}{12} \neq -\frac{3}{m}$   
 $m^2 \neq 36$ ,  $m \neq \pm 6$   
(ii) infinitely many solutions when  $-\frac{m}{12} = -\frac{3}{m}$ 

 $m^2 = 36$ ,  $m = \pm 6$ 

## 

Q7

The transition matrix is  $\begin{bmatrix} 0.84 & 0.64 \\ 0.16 & 0.36 \end{bmatrix}$ .

In the long term the percentage of successful attempts does not depend on the outcome of the last attempt, i.e. the two columns

in 
$$\begin{bmatrix} 0.84 & 0.64 \\ 0.16 & 0.36 \end{bmatrix}^n$$
 become the same.

$$\begin{bmatrix} 0.84 & 0.64 \\ 0.16 & 0.36 \end{bmatrix}^n \to \begin{bmatrix} p & p \\ 1-p & 1-p \end{bmatrix} \text{ as } n \to \infty$$

$$\therefore \begin{bmatrix} 0.84 & 0.64 \\ 0.16 & 0.36 \end{bmatrix} \begin{bmatrix} p & p \\ 1-p & 1-p \end{bmatrix} = \begin{bmatrix} p & p \\ 1-p & 1-p \end{bmatrix}$$

$$\therefore 0.84p + 0.64(1-p) = p$$

$$\therefore p = 0.8$$

In the long term, 80% of her attempts are successful.

Q8 
$$h(x) = \frac{x^n}{e^x}$$
  
 $h'(x) = \frac{e^x n x^{n-1} - e^x x^n}{\left(e^x\right)^2} = \frac{n x^{n-1} - x^n}{e^x}$ 

Let h'(x) = 0

$$\therefore nx^{n-1} - x^n = 0$$
,  $x^{n-1}(n-x) = 0$ ,  $x = 0$  or  $n$ 

| х     | < n | n | > n |
|-------|-----|---|-----|
| h'(x) | +   | 0 | ı   |

It is local maximum at x = n.

Q9 
$$g(x) = x^2$$
  
 $g(u+v)+g(u-v)=(u+v)^2+(u-v)^2$   
 $=2(u^2+v^2)=2(g(u)+g(v))$ 

Q10 
$$f(x) = e^x + e^{-x}$$
,  $g(x) = e^x - e^{-x}$ 

(i) 
$$[f(x)]^2 = (e^x + e^{-x})^2 = e^{2x} + e^{-2x} + 2 = f(2x) + 2$$

(ii) 
$$f(x)g(x) = (e^x + e^{-x})(e^x - e^{-x}) = e^{2x} - e^{-2x} = g(2x)$$

(iii) 
$$[f(x)]^2 - [g(x)]^2 = (f(x) - g(x))(f(x) + g(x))$$
  
=  $2e^{-x} \times 2e^x = 4$ 

Q11 The average value of  $y = e^x$  over [0,2] is

$$\frac{\int_{0}^{2} e^{x} dx}{2 - 0} = \frac{\left[e^{x}\right]_{0}^{2}}{2} = \frac{e^{2} - 1}{2}.$$

Q12a.



b. 
$$f'(x) =\begin{cases} -2x, x \le 0 \\ 2x, x > 0 \end{cases}$$
 or  $f'(x) = 2x \operatorname{sgn}(x)$  or  $f'(x) = |2x|$ 

Q13a. 
$$v(0) = 24$$

b. 
$$\frac{24}{t+1} < 2$$
,  $\frac{t+1}{24} > \frac{1}{2}$ ,  $\therefore t > 11$  s

c. Distance = 
$$\int_{0}^{10} \frac{24}{t+1} dt = [24 \log_e(t+1)]_{0}^{10} = 24 \log_e 11$$
 metres

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors