Free maths self-help revision © copyright itute 2014

Applications of functions and calculus

Curve sketching

Sketching the graph of a function requires the knowledge of the x and y-intercepts, the asymptotic behaviours and the position and nature of each stationary point.

The x-coordinate of a stationary point can be found by letting $\frac{dy}{dx} = 0$, or f'(x) = 0, then solve for x. The y-coordinate is found by substituting the x value in the equation of the function.

The nature of a stationary point can be determined by finding the value of $\frac{dy}{dx}$ on each side of the stationary point.

Left	Stationary point	Right	Nature
$\frac{dy}{dx} > 0$	$\frac{dy}{dx} = 0$	$\frac{dy}{dx} < 0$	Local max.
$\frac{dy}{dx} < 0$	$\frac{dy}{dx} = 0$	$\frac{dy}{dx} > 0$	Local min.
$\frac{dy}{dx} > 0$	$\frac{dy}{dx} = 0$	$\frac{dy}{dx} > 0$	Inflection pt.
$\frac{dy}{dx} < 0$	$\frac{dy}{dx} = 0$	$\frac{dy}{dx} < 0$	Inflection pt.

Note: A local maximum (local minimum) is not necessarily the maximum (minimum) point of the function. You need to compare it with other stationary points and end points in the domain.

Example 1 Sketch $y = x^3 - 3x$, $x \in [-2,2]$.

End points: x = -2, y = -2; x = 2, = y = 2. *x*-intercepts: Let y = 0, $x^3 - 3x = 0$, $x(x^2 - 3) = 0$, $x(x - \sqrt{3})(x + \sqrt{3}) = 0$, $x = -\sqrt{3}, 0, \sqrt{3}$. Stationary points: Let $\frac{dy}{dx} = 0$, $\frac{dy}{dx} = 3(x^2 - 1) = 0$, $\therefore x = -1, 1$ $\therefore y = 2, -2$

Nature of stationary points:

At $x =$	- 2	- 1	0	1	2
$\frac{dy}{dx}$	> 0	= 0	< 0	= 0	>0
Nature		Local max.		Local min.	

Asymptotic behaviour: None.

Example 2 Sketch the graph of $x = \frac{1}{10} (t-5)^2 e^{-0.1t}$, $t \in [0, \infty)$. *t*-intercepts: Let x = 0, $\frac{1}{10} (t-5)^2 e^{-0.1t} = 0$. Since $e^{-0.1t} > 0$, $\therefore t-5=0$ or t=5. This intercept is also a turning point as indicated by (t-5) being a repeated factor. *x*-intercept: Let t=0, x=2.5. This is also an end point. Asymptotic behaviour:

As $t \to \infty$, the dominant factor $e^{-0.1t} \to 0^+$, $\therefore x \to 0^+$. Stationary points: $\frac{dx}{dt} = 0$, $-0.01(t-5)^2 e^{-0.1t} + 0.2(t-5)e^{-0.1t} = 0$, $-(t-5)e^{-0.1t}(0.01(t-5)-0.2) = 0$, $-(t-5)(0.01t-0.25)e^{-0.1t} = 0$. Since $e^{-0.1t} > 0$, $\therefore t-5=0$, i.e. t=5 and x=0 (as discussed earlier), or 0.01t - 0.25 = 0, i.e. t=25 and $x = 40e^{-2.5}$.

Nature of stationary points:

At $t =$	4	5	10	25	26
$\frac{dx}{dt}$	< 0	= 0	> 0	= 0	< 0
Nature		Local min.		Local max.	

Example 3 Sketch $y = e^{\frac{x}{\sqrt{3}}} \cos(x)$ for $x \in [0, 2\pi]$. End points: At x = 0, y = 1. At $x = 2\pi$, $y = e^{\frac{2\pi}{\sqrt{3}}}$. *x*-intercepts: Let y = 0, $e^{\frac{x}{\sqrt{3}}} \cos(x) = 0$, and since $e^{\frac{x}{\sqrt{3}}} > 0$, $\therefore \cos(x) = 0$, and hence $x = \frac{\pi}{2}$ or $\frac{3\pi}{2}$. Asymptotic behaviour: None. Stationary points: $\frac{dy}{dx} = 0$, $-e^{\frac{x}{\sqrt{3}}} \sin(x) + \frac{1}{\sqrt{3}}e^{\frac{x}{\sqrt{3}}} \cos(x) = 0$, $-e^{\frac{x}{\sqrt{3}}} \left(\sin(x) - \frac{1}{\sqrt{3}}\cos(x)\right) = 0$, $\sin(x) = \frac{1}{\sqrt{3}}\cos(x)$, $\tan(x) = \frac{1}{\sqrt{3}}$ H ence $x = \frac{\pi}{6}$ and $y = \frac{\sqrt{3}}{2}e^{\frac{\pi}{6\sqrt{3}}}$ or $x = \frac{7\pi}{6}$ and $y = -\frac{\sqrt{3}}{2}e^{\frac{7\pi}{6\sqrt{3}}}$. Nature of stationary points:

At $x =$	0.5	$\frac{\pi}{6}$	1	$\frac{7\pi}{6}$	4
$\frac{dy}{dx}$	>0	= 0	< 0	= 0	>0
Nature		Local max.		Local min.	

Example 4 Sketch $y = \frac{1}{x+2} + \frac{1}{3-x} + 1$ for $x \in [-1,3)$. End point: At x = -1, y = 2.25. Asymptotic behaviour: As $x \to 3^-$, $y \to \infty$. The function is positive for $x \in [-1,3)$, no *x*-intercepts. *y*-intercept: Let x = 0, $y = \frac{11}{6}$. Stationary points: $\frac{dy}{dx} = -\frac{1}{(x+2)^2} + \frac{1}{(3-x)^2} = 0$, $\frac{(x+2)^2 - (3-x)^2}{(3-x)^2(x+2)^2} = 0$, $\therefore (x+2)^2 - (3-x)^2 = 0$, ((x+2)-(3-x))((x+2)+(3-x)) = 0, 5(2x-1) = 0, $x = \frac{1}{2}$ and $y = \frac{9}{5}$.

Nature of stationary point:

At x =	0	$\frac{1}{2}$	1
$\frac{dy}{dx}$	< 0	= 0	> 0
Nature		Local min.	

Equations of tangents and normals

Gradient of the tangent to the curve y = f(x) at x = a is $m_T = f'(a)$.

Gradient of the normal is $m_N = -\frac{1}{m_T} = -\frac{1}{f'(a)}$.

Use $y - y_1 = m(x - x_1)$ to find equations of tangents and normals.

For tangents:
$$y - f(a) = f'(a) \times (x - a)$$
.
For normals: $y - f(a) = -\frac{1}{f'(a)} \times (x - a)$.

Example 5 Find the equation of the normal to the curve $y = 3\log_e(2x+1)-1$ at x = 0.

At
$$x = 0$$
, $y = -1$, $m_T = \frac{dy}{dx} = \frac{6}{2x+1} = 6$ and $\therefore m_N = -\frac{1}{6}$.
Equation of the normal: $y = -\frac{1}{6}(x-0)$, $\therefore y = -\frac{1}{6}x-1$

Example 6 Find the equation of the tangent to the curve $y = a(x+1)(x-1)^2$ at the y-intercept. Find the point where the tangent crosses the curve. Explain why this point is independent of *a*.

At the y-intercept, x = 0, y = a, $\frac{dy}{dx} = 2a(x+1)(x-1) + a(x-1)^2$ = a(x-1)(2(x+1)+x-1) = a(x-1)(3x+1) = -a. Equation of the tangent at the y-intercept: y - a = -a(x-0), i.e. y = -a(x-1).

Solve y = -a(x-1) and $y = a(x+1)(x-1)^2$ simultaneously to find the intersection. $-a(x-1) = a(x+1)(x-1)^2$,

.: $a(x-1) + a(x+1)(x-1)^2 = 0$, a(x-1)(1 + (x+1)(x-1)) = 0, .: $a(x-1)x^2 = 0$, .: x = 0 (where the line touches the curve) or

x = 1 (where the line crosses the curve) and y = 0.

The intersecting point is (1,0), and since the parameter *a* does not appear in the coordinates, it is independent of *a*.

Example 7 The line y = -2x + 1 is a tangent to the parabola $y = x^2 - px + q$. Find the values of *p* and *q*.

 $m_{T} = \frac{dy}{dx} = 2x - p = -2 \dots x = \frac{p-2}{2}$ is the *x*-coordinate of the point of contact. The *y*-coordinate is found by substituting $x = \frac{p-2}{2}$ in $y = -2x + 1, \dots y = 3 - p$, or in $y = x^{2} - px + q$, $\therefore y = \left(\frac{p-2}{2}\right)^{2} - \frac{p(p-2)}{2} + q$. $\therefore 3 - p = \left(\frac{p-2}{2}\right)^{2} - \frac{p(p-2)}{2} + q$, it can be simplified to $(2-p)^{2} = 4(q-1)$. The values of *p* and *q* have to satisfy this relationship, e.g. if p = 0, q = 2; if $p = 1, q = \frac{5}{4}$; if $p = -1, q = \frac{13}{4}$. There are infinitely many possibilities.

Exercise: Next page

Q1 (2006 VCAA Exam 1)

A normal to the graph of $y = \sqrt{x}$ has equation y = -4x + a, where a is a real constant. Find the value of a.

Q2 (2006 VCAA Exam 2)

Consider the function $f:[0, 2\pi] \rightarrow R$, $f(x) = 2 \sin(x)$. The graph of f is shown below, with tangents drawn at points A and B.

- a. i. Find f'(x).
- ii. Find the maximum and minimum values of |f'(x)|.
- b. i. The gradient of the curve with equation y = f(x), when x = ^π/₃, is 1. Find the other value of x for which the gradient of the curve, with equation y = f(x), is 1. (The exact value must be given.)
 - ii. Find the equation of the tangent to the curve at $x = \frac{\pi}{2}$. (Exact values must be given.)
 - iii. Find the axes intercepts of the tangent found in **b**. ii. (Exact values must be given.)
- c. The two tangents to the curve at points A and B have gradient 1. A translation of m units in the positive direction of the x-axis takes the tangent at A to the tangent at B. Find the exact value of m.

Q3 (2007 VCAA Exam 1)

The graph of $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{\frac{x}{2}} + 1$ is shown. The normal to the graph of f where it crosses the *y*-axis is also shown.

Find the equation of the normal to the graph of f where it crosses the *y*-axis.

Q4 (2008 VCAA Exam 2)

The graph of $y = x^3 - 12x$ has turning points where x = 2 and x = -2. The graph of $y = |x^3 - 12x|$ has a positive gradient for **A.** $x \in R$

- **B.** $x \in \{x : x < -2\} \cup \{x : x > 2\}$
- **C.** $x \in \{x : x < -2\sqrt{3}\} \cup \{x : x > 2\sqrt{3}\}$
- **D.** $x \in \{x : -2\sqrt{3} < x < -2\} \cup \{x : 0 < x < 2\} \cup \{x : x > 2\sqrt{3}\}$
- **E.** $x \in \{x : -2 < x < 0\} \cup \{x : 2 < x < 2\sqrt{3}\} \cup \{x : x > 2\sqrt{3}\}$

Q5 (2008 VCAA Exam 2)

The diagram below shows part of the graph of the function $f: \mathbb{R}^+ \to \mathbb{R}$, f(x) = -.

The line segment CA is drawn from the point C(1, f(1)) to the point A(a, f(a)) where $a \ge 1$.

- a. i. Calculate the gradient of CA in terms of a
 - ii. At what value of x between 1 and a does the tangent to the graph of f have the same gradient as CA?

Q6 (2008 VCAA Exam 2)

The graph of $f: (-\pi, \pi) \cup (\pi, 3\pi) \to R$, $f(x) = \tan\left(\frac{x}{2}\right)$ is shown below.

- a. i. Find $f'\left(\frac{\pi}{2}\right)$
 - ii. Find the equation of the normal to the graph of y = f(x) at the point where $x = \frac{\pi}{2}$
 - iii. Sketch the graph of this normal on the axes above. Give the exact axis intercepts.
- b. Find the exact values of $x \in (-\pi, \pi) \cup (\pi, 3\pi)$ such that $f'(x) = f'\left(\frac{\pi}{2}\right)$

Let g(x) = f(x - a).

c. Find the exact value of $a \in (-1, 1)$ such that g(1) = 1.

Let $h: (-\pi, \pi) \cup (\pi, 3\pi) \to R$, $h(x) = \sin\left(\frac{x}{2}\right) + \tan\left(\frac{x}{2}\right) + 2$ d. i. Find h'(x).

- ii. Solve the equation h'(x) = 0 for $x \in (-\pi, \pi) \cup (\pi, 3\pi)$. (Give exact values.)
- e. Sketch the graph of y = h(x) on the axes below.
 - Give the exact coordinates of any stationary points.
 - · Label each asymptote with its equation.
 - Give the exact value of the y-intercept.

Q7 (2009 VCAA Exam 1)

Let $f: R \to R, f(x) = e^x + k$, where k is a real number. The tangent to the graph of f at the point where x = a passes through the point (0, 0). Find the value of k in terms of a.

Q8 (2009 VCAA Exam 2)

At the point (1, 1) on the graph of the function with rule $y = (x - 1)^3 + 1$

- A. there is a local maximum.
- B. there is a local minimum.
- C. there is a stationary point of inflection.
- D. the gradient is not defined.
- E. there is a point of discontinuity

O9 (2009 VCAA Exam 2)

The tangent at the point (1, 5) on the graph of the curve y = f(x) has equation y = 3 + 2x. The tangent at the point (3, 8) on the curve y = f(x - 2) + 3 has equation

- A. y = 2x 4
- **B.** y = x + 5
- C. y = -2x + 14
- **D.** y = 2x + 4
- **E.** y = 2x + 2

Q10 (2009 VCAA Exam 2)

A cubic function has the rule y = f(x). The graph of the derivative function f' crosses the x-axis at (2, 0) and (-3, 0). The maximum value of the derivative function is 10. The value of x for which the graph of y = f(x) has a local maximum is

- **A.** -2
- **B.** 2
- C. -3

D. 3

E. $-\frac{1}{2}$

Q11 (2009 VCAA Exam 2)

Let $f: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}$, $f(x) = 6\sqrt{x} - x - 5$. The graph of y = f(x) is shown below.

