Free maths self-help revision © copyright itute 2014

Applications of functions and calculus

Curve sketching

Sketching the graph of a function requires the knowledge of the x and y-intercepts, the asymptotic behaviours and the position and nature of each stationary point.

The x-coordinate of a stationary point can be found by letting $\frac{d y}{d x}=0$, or $f^{\prime}(x)=0$, then solve for x. The y-coordinate is found by substituting the x value in the equation of the function.
The nature of a stationary point can be determined by finding the value of $\frac{d y}{d x}$ on each side of the stationary point.

Left	Stationary point	Right	Nature
$\frac{d y}{d x}>0$	$\frac{d y}{d x}=0$	$\frac{d y}{d x}<0$	Local max.
$\frac{d y}{d x}<0$	$\frac{d y}{d x}=0$	$\frac{d y}{d x}>0$	Local min.
$\frac{d y}{d x}>0$	$\frac{d y}{d x}=0$	$\frac{d y}{d x}>0$	Inflection pt.
$\frac{d y}{d x}<0$	$\frac{d y}{d x}=0$	$\frac{d y}{d x}<0$	Inflection pt.

Note: A local maximum (local minimum) is not necessarily the maximum (minimum) point of the function. You need to compare it with other stationary points and end points in the domain.

Example 1 Sketch $y=x^{3}-3 x, x \in[-2,2]$.
End points: $x=-2, y=-2 ; x=2,=y=2$.
x-intercepts: Let $y=0, x^{3}-3 x=0, x\left(x^{2}-3\right)=0$,
$x(x-\sqrt{3})(x+\sqrt{3})=0, x=-\sqrt{3}, 0, \sqrt{3}$.
Stationary points: Let $\frac{d y}{d x}=0, \frac{d y}{d x}=3\left(x^{2}-1\right)=0, .: x=-1,1$ $\therefore y=2,-2$
Nature of stationary points:

At $x=$	-2	-1	0	1	2
$\frac{d y}{d x}$	>0	$=0$	<0	$=0$	>0
Nature		Local max.		Local min.	

Asymptotic behaviour: None.

Example 2 Sketch the graph of $x=\frac{1}{10}(t-5)^{2} e^{-0.1 t}, t \in[0, \infty)$.
t-intercepts: Let $x=0, \frac{1}{10}(t-5)^{2} e^{-0.1 t}=0$.

Since $e^{-0.1 t}>0, .: t-5=0$ or $t=5$. This intercept is also a turning point as indicated by $(t-5)$ being a repeated factor. x-intercept: Let $t=0, x=2.5$. This is also an end point.
Asymptotic behaviour:
As $t \rightarrow \infty$, the dominant factor $e^{-0.1 t} \rightarrow 0^{+}, .: x \rightarrow 0^{+}$.
Stationary points: $\frac{d x}{d t}=0,-0.01(t-5)^{2} e^{-0.1 t}+0.2(t-5) e^{-0.1 t}=0$,
$-(t-5) e^{-0.1 t}(0.01(t-5)-0.2)=0,-(t-5)(0.01 t-0.25) e^{-0.1 t}=0$.
Since $e^{-0.1 t}>0$, : $t-5=0$, i.e. $t=5$ and $x=0$ (as discussed earlier), or $0.01 t-0.25=0$, i.e. $t=25$ and $x=40 e^{-2.5}$.

Nature of stationary points:

At $t=$	4	5	10	25	26
$\frac{d x}{d t}$	<0	$=0$	>0	$=0$	<0
Nature		Local min.		Local max.	

Example 3 Sketch $y=e^{\frac{x}{\sqrt{3}}} \cos (x)$ for $x \in[0,2 \pi]$.
End points: At $x=0, y=1$. At $x=2 \pi, y=e^{\frac{2 \pi}{\sqrt{3}}}$.
x-intercepts: Let $y=0, e^{\frac{x}{\sqrt{3}}} \cos (x)=0$, and since $e^{\frac{x}{\sqrt{3}}}>0$,
$\therefore \cos (x)=0$, and hence $x=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$.
Asymptotic behaviour: None.
Stationary points: $\frac{d y}{d x}=0,-e^{\frac{x}{\sqrt{3}}} \sin (x)+\frac{1}{\sqrt{3}} e^{\frac{x}{\sqrt{3}}} \cos (x)=0$,
$-e^{\frac{x}{\sqrt{3}}}\left(\sin (x)-\frac{1}{\sqrt{3}} \cos (x)\right)=0, \sin (x)=\frac{1}{\sqrt{3}} \cos (x), \tan (x)=\frac{1}{\sqrt{3}} \mathrm{H}$
ence $x=\frac{\pi}{6}$ and $y=\frac{\sqrt{3}}{2} e^{\frac{\pi}{6 \sqrt{3}}}$ or $x=\frac{7 \pi}{6}$ and $y=-\frac{\sqrt{3}}{2} e^{\frac{7 \pi}{6 \sqrt{3}}}$.
Nature of stationary points:

At $x=$	0.5	$\frac{\pi}{6}$	1	$\frac{7 \pi}{6}$	4
$\frac{d y}{d x}$	>0	$=0$	<0	$=0$	>0
Nature		Local max.		Local min.	

Example 4 Sketch $y=\frac{1}{x+2}+\frac{1}{3-x}+1$ for $x \in[-1,3)$.
End point: At $x=-1, y=2.25$.
Asymptotic behaviour: As $x \rightarrow 3^{-}, y \rightarrow \infty$.
The function is positive for $x \in[-1,3)$, no x-intercepts.
y-intercept: Let $x=0, y=\frac{11}{6}$.
Stationary points: $\frac{d y}{d x}=-\frac{1}{(x+2)^{2}}+\frac{1}{(3-x)^{2}}=0$,
$\frac{(x+2)^{2}-(3-x)^{2}}{(3-x)^{2}(x+2)^{2}}=0, \therefore(x+2)^{2}-(3-x)^{2}=0$,
$((x+2)-(3-x))((x+2)+(3-x))=0,5(2 x-1)=0, x=\frac{1}{2}$ and $y=\frac{9}{5}$.
Nature of stationary point:

At $x=$	0	$\frac{1}{2}$	1
$\frac{d y}{d x}$	<0	$=0$	>0
Nature		Local min.	

Equations of tangents and normals

Gradient of the tangent to the curve $y=f(x)$ at $x=a$ is $m_{T}=f^{\prime}(a)$.
Gradient of the normal is $m_{N}=-\frac{1}{m_{T}}=-\frac{1}{f^{\prime}(a)}$.
Use $y-y_{1}=m\left(x-x_{1}\right)$ to find equations of tangents and normals.
For tangents: $y-f(a)=f^{\prime}(a) \times(x-a)$.
For normals: $y-f(a)=-\frac{1}{f^{\prime}(a)} \times(x-a)$.
Example 5 Find the equation of the normal to the curve $y=3 \log _{e}(2 x+1)-1$ at $x=0$.
At $x=0, y=-1, m_{T}=\frac{d y}{d x}=\frac{6}{2 x+1}=6$ and.$: m_{N}=-\frac{1}{6}$.
Equation of the normal: $y-{ }^{-} 1=-\frac{1}{6}(x-0),:: y=-\frac{1}{6} x-1$.

Example 6 Find the equation of the tangent to the curve $y=a(x+1)(x-1)^{2}$ at the y-intercept.
Find the point where the tangent crosses the curve.
Explain why this point is independent of a.
At the y-intercept, $x=0, y=a, \frac{d y}{d x}=2 a(x+1)(x-1)+a(x-1)^{2}$ $=a(x-1)(2(x+1)+x-1)=a(x-1)(3 x+1)=-a$.
Equation of the tangent at the y-intercept: $y-a=-a(x-0)$,
i.e. $y=-a(x-1)$.

Solve $y=-a(x-1)$ and $y=a(x+1)(x-1)^{2}$ simultaneously to find the intersection. $-a(x-1)=a(x+1)(x-1)^{2}$,
$\therefore a(x-1)+a(x+1)(x-1)^{2}=0, a(x-1)(1+(x+1)(x-1))=0$,
$\therefore a(x-1) x^{2}=0, \therefore x=0$ (where the line touches the curve) or $x=1$ (where the line crosses the curve) and $y=0$.
The intersecting point is $(1,0)$, and since the parameter a does not appear in the coordinates, it is independent of a.

Example 7 The line $y=-2 x+1$ is a tangent to the parabola $y=x^{2}-p x+q$. Find the values of p and q.
$m_{T}=\frac{d y}{d x}=2 x-p=-2 . .: x=\frac{p-2}{2}$ is the x-coordinate of the point of contact. The y-coordinate is found by substituting $x=\frac{p-2}{2}$ in $y=-2 x+1, .: y=3-p$,
or in $y=x^{2}-p x+q, .: y=\left(\frac{p-2}{2}\right)^{2}-\frac{p(p-2)}{2}+q$.
$\therefore 3-p=\left(\frac{p-2}{2}\right)^{2}-\frac{p(p-2)}{2}+q$, it can be simplified to $(2-p)^{2}=4(q-1)$. The values of p and q have to satisfy this relationship, e.g. if $p=0, q=2$; if $p=1, q=\frac{5}{4}$; if $p=-1$, $q=\frac{13}{4}$. There are infinitely many possibilities.

Q1 (2006 VCAA Exam 1)

A normal to the graph of $y=\sqrt{x}$ has equation $y=-4 x+a$, where a is a real constant. Find the value of a.

Q2 (2006 VCAA Exam 2)

Consider the function $f:[0,2 \pi] \rightarrow R, f(x)=2 \sin (x)$. The graph of f is shown below, with tangents drawn at points A and B.

a. i. Find $f^{\prime}(x)$.
ii. Find the maximum and minimum values of $\left|f^{\prime}(x)\right|$
b. i. The gradient of the curve with equation $y=f(x)$, when $x=\frac{\pi}{3}$, is 1 . Find the other value of x for which the gradient of the curve, with equation $y=f(x)$, is 1 . (The exact value must be given.)
ii. Find the equation of the tangent to the curve at $x=\frac{\pi}{3}$. (Exact values must be given.)
iii. Find the axes intercepts of the tangent found in b. ii. (Exact values must be given.)
c. The two tangents to the curve at points A and B have gradient 1 . A translation of m units in the positive direction of the x-axis takes the tangent at A to the tangent at B. Find the exact value of m.

Q3 (2007 VCAA Exam 1)

The graph of $f: R \rightarrow R, f(x)=e^{\frac{x}{2}}+1$ is shown. The normal to the graph of f where it crosses the y-axis is also shown.

Find the equation of the normal to the graph of f where it crosses the y-axis.

Q4 (2008 VCAA Exam 2)

The graph of $y=x^{3}-12 x$ has turning points where $x=2$ and $x=-2$.
The graph of $y=\left|x^{3}-12 x\right|$ has a positive gradient for
A. $x \in R$
B. $x \in\{x: x<-2\} \cup\{x: x>2\}$
C. $x \in\{x: x<-2 \sqrt{3}\} \cup\{x: x>2 \sqrt{3}\}$
D. $x \in\{x:-2 \sqrt{3}<x<-2\} \cup\{x: 0<x<2\} \cup\{x: x>2 \sqrt{3}\}$
E. $x \in\{x:-2<x<0\} \cup\{x: 2<x<2 \sqrt{3}\} \cup\{x: x>2 \sqrt{3}\}$

Q5 (2008 VCAA Exam 2)

The diagram below shows part of the graph of the function $f: R^{+} \rightarrow R, f(x)=\frac{7}{x}$.

The line segment $C A$ is drawn from the point $C(1, f(1))$ to the point $A(a, f(a))$ where $a>1$.
a. i. Calculate the gradient of $C A$ in terms of a.
ii. At what value of x between 1 and a does the tangent to the graph of f have the same gradient as CA?

Q6 (2008 VCAA Exam 2)
The graph of $f:(-\pi, \pi) \cup(\pi, 3 \pi) \rightarrow R, f(x)=\tan \left(\frac{x}{2}\right)$ is shown below.

a. i. Find $f^{\prime}\left(\frac{\pi}{2}\right)$.
ii. Find the equation of the normal to the graph of $y=f(x)$ at the point where $x=\frac{\pi}{2}$.
iii. Sketch the graph of this normal on the axes above. Give the exact axis intercepts.
b. Find the exact values of $x \in(-\pi, \pi) \cup(\pi, 3 \pi)$ such that $f^{\prime}(x)=f^{\prime}\left(\frac{\pi}{2}\right)$.

Let $g(x)=f(x-a)$.
c. Find the exact value of $a \in(-1,1)$ such that $g(1)=1$.

Let $h:(-\pi, \pi) \cup(\pi, 3 \pi) \rightarrow R, h(x)=\sin \left(\frac{x}{2}\right)+\tan \left(\frac{x}{2}\right)+2$.
d. i. Find $h^{\prime}(x)$.
ii. Solve the equation $h^{\prime}(x)=0$ for $x \in(-\pi, \pi) \cup(\pi, 3 \pi)$. (Give exact values.)
e. Sketch the graph of $y=h(x)$ on the axes below.

- Give the exact coordinates of any stationary points.
- Label each asymptote with its equation.
- Give the exact value of the y-intercept.

Q7 (2009 VCAA Exam 1)

Let $f: R \rightarrow R, f(x)=e^{x}+k$, where k is a real number. The tangent to the graph of f at the point where $x=a$ passes through the point $(0,0)$. Find the value of k in terms of a.

Q8 (2009 VCAA Exam 2)
At the point $(1,1)$ on the graph of the function with rule $y=(x-1)^{3}+1$
A. there is a local maximum.
B. there is a local minimum.
C. there is a stationary point of inflection.
D. the gradient is not defined.
E. there is a point of discontinuity.

Q9 (2009 VCAA Exam 2)
The tangent at the point $(1,5)$ on the graph of the curve $y=f(x)$ has equation $y=3+2 x$.
The tangent at the point $(3,8)$ on the curve $y=f(x-2)+3$ has equation
A. $y=2 x-4$
B. $y=x+5$
C. $y=-2 x+14$
D. $y=2 x+4$
E. $y=2 x+2$

Q10 (2009 VCAA Exam 2)

A cubic function has the rule $y=f(x)$. The graph of the derivative function f^{\prime} crosses the x-axis at $(2,0)$ and $(-3,0)$. The maximum value of the derivative function is 10 .
The value of x for which the graph of $y=f(x)$ has a local maximum is
A. -2
B. 2
C. -3
D. 3
E. $-\frac{1}{2}$

Q11 (2009 VCAA Exam 2)
Let $f: R^{+} \cup\{0\} \rightarrow R, f(x)=6 \sqrt{x}-x-5$.
The graph of $y=f(x)$ is shown below.

